DTIC FILE COPY i’y

\ §-

iy SACHUSETTS
LABORATORY FOR - Z‘s,;? INS'H.MEOF .
| 'COMEUTER SCIENCE. It Wl TECHNOLOGY

NIIT/LCSIER469>Z |

-

N

LOCALITY IN. PARALLEL\
COMPUTATION

™
3\
™~
Co
—
N
h
Q
<

Bruce MacDoweli Maggs .

”

-

DISTRIRUTION STATEMENT A
‘ Approved for pukliz release
Disnbution Uakimited

R

| September 198 . - .

90 02 27 068

=~

o’

Unclassified
TECURIYY CLASLIFCATION OF THiS PAGE

REPORT DOCUMENTATION PAGE

1a, ACPORT SEQURITY CLASSIFICATION 1o AESTAICTIVE MARKINGS
gs)fied)
28, SECURITY CIASSIFICATION AUTHORITY 1 OISTRIRGTIONIAVAILARILITY OF REFOAT
Appievad foz public release; distribution
25 DECLASSIFICATION7DOWNGRADING SCHEDULE 18 anlimiced.
4. PERFORMING OAGANIZATION AEPCRT NUMBEA(S) S MONITORING ORGANIZATION AEPORT NUMBEA(S)
MIT/LCS/TR 469 X00014-87-K825
& NAME OF PERFORMING ORGANIZATION sb ?';nct svr‘:m Ta NAME OF MONTONNG ORGANIZATION
- 2ppicabie)
MIT Lab for Computer Science Office of MNaval Research/Depc. of Navy
&. ADORESS (Gity, State, and 2P Couke) b, ADORESS (Cty, State, and 21 Code)
545 Taechnology Square Informacion Systems Program
Cambridge, MA 02139 Arlingron, VA 222)7
8. NAME Of FUNDING / SPONSOKING 8b OFFICE SYMBOL {8 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION {tf applicable)
PDARPA/DOG
. ADORESS (City, State, and 2IP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
1400 Wilson Blvd. ELEMENT NO. | NO. NO ACCESSION NO
Arlington, VA 22217

1} THILE (inciudie Secunty Classlication)

Localicy in Parallel Computation

12 PERSONAL AUTHOR(S)
Maggs, Bruce MacDowell

13a, TYPE OF REPORT ‘ 13b. TIME COVERED 14, DATE OF REPORT (Y2av, Month, Day) [iS PAGE COUNT
158

Tectinlcal W = | rrOM 10 September 1989
16. SUPPLEMENTARY NOTATIOY C £

’

17 COSATI CONES 18. SUBJECT TERMS (Continue on feverse if necessary and identify by block

number)
FIELD GROU? SUS-GROUP parallel computation, fix»< connection networks; pachet

routing algorithms, -area wiiversal networks, facitrees;

diszribuced random-access machines, graph algorithms, nec. d

.

19, ABSTRACT {Continve on reverse if necessary and identify by block number) - .

- This thesis explores strategies for exploiting locality in three major arexs of parallel computation:
packet routing, graph algorithms, and network emulations. Each of these areas is covered by a
separate chapter.

‘Chapter 1 describes a network-independent approach to the packet-routing problem. Our
strategy is to partition the problem into two stages: a path-selection stage and a scheduling
stage.. In the first stage we find paths for the packets with small congestion, ¢, and dilation. d.
Once l‘he paths are fixed, both are lower bounds on the time required to deliver the packets. In
the second stage we find a schedule for the movement of each packet along its path so that no
two pal:kets traverse the same edge at the same time, and so that the total time and maximum
queue 'Sjgg required to route all of the packets to sheir destinations are minimized.

o

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
(3 unclassiricounLiMiTeD [SAME AS RPT [oTiC USERS Unclassified

22a, NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (inciude Area Code) | 22¢, QFFICE SYMBOL
Judv Lictle (617) 253-5894

DD FORM 1473, 2a MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete
Prising O WEB-807.047

| T3 §
Unclassified

F_—f -

19 continued

Although path.selection strategies vary from network to network, we show that there is an
efficient on.line scheduling algorithm for the entire class of layered networks. When applied to
an N.packet problem, the algorithm produces a schedule of length O(c + d + log), with high
probability.

The algorithm has many applications to routing and sorting. Among them are the first on-
line algorithms for routing V-packets on an ¥-node shuffle-exchange graph in O(log N) steps
using constant-size queues and for routing kN packets on an ¥.node k-dimensional array with
maximum side length A in O(kAM) steps using constant.size queues. The scheduiing algorithm
can also be used as a subroutine in sorting algorithms, It yields the first asymptotically optimal
algorithms for sorting on butterfly, shuffle-exchange, and rmultidimensional array networks using
constant-size queues.

The algorithm can also be applied to the construction of area-universal networks: N-node
networks with VLSI.layout area O(N) that can simulate all other networks with area O(XY)
with only O(log V) slowdown.

In Chapter 1 we also prove the existence of a schedule of length O(c + d) for any set of
packets whose paths have congestion ¢ and dilation d (in any network) that uses constant.size
queues. Unfortunately, no efficient algorithm for constructing the schedule is known.

Chapter 2 introduces a model for parallel computation, called the distrbuted random-access
machine (DRAM), in which the communication requirements of parallel algorithms can be
evaluated. A DRAM is an abstraction of a parallel computer in which memory accesses are
implemented by routing messages through a communication network. It explicitly models the
congestion of messages across cuts of the network. |

We introduce the notion of a conservative algotithm as one whose communication require-
ments at each step can be bounded by the congestion of poiuters of the input data structure
across cuts of a DRAM. A conservative algorithm is guaranteed not to generate undo conges-
tion in any underlying network. Chapter 2 presents conservative algorithms for a variety of
graph problems. Problems such as computing treewalk numberings, finding the separator of 3
tree, and evaluating all subexpressions in an expression tree can be solved in O(log) steps
for N-node trees by conservative algorithms for an exclusive-read exclusive-write DRAM. More
com slex problems such as finding a minimum-cost spanning forest, computing biconnected
components and constructing an Eulerian cycle require O(log®) steps, for graphs of size V.
For concurrent-read cencurrent-write DRAM’s, all of these problems can be solved by O(log)
step conservative algorithms,

Chapter 3 examines the problem of how efficiently a host network can emulate a guest
network. The goal is to emulate T¢' steps of an Ng-node guest network on an Nj; node
host network. ' We call an emulation work-preseri<ng if the time required by the host, Ty is
O(TgNG/Ny) because then both the guest und host aetworks perform the same amount of
total work (processor-time product), O(TG V), to within a constant factor. A work-preserving
emulation is efficient because it achieves optimal speedup over a sequential emulation of the
guest. We tay that an emulation is real-time if Ty = O(Tg), because then the host emulates
the guest with constant delay.

Although man; isolated emulation results have been proved for specific networks in the

. past, and measures such as dilation and congestion were known to be important, the field has
lacked 2 model within which general results and meaningful lower bounds could be proved. We
attempt to provide such a model, along with techniques for proving lower bounds based on
comparing the locality the networks.

Some of the more interesting and diverse results in Chapter 3 include a proof that a linear
array can emulate a (much larger) butterfly in a work-preserving fashion, but that a butterfly
cannot emulate an expander (of any size) in a work-preserving fashion; a proof that a mesh can
be emulated in real time in a work-preserving fashion on a butterfly, even though any O(1)-to-1
embedding of the mesh has dilation Q(log .V); and a proof that an /¥-node butterfly can emulate
an N log N-node shuffle-exchauge graph in a work-preserving fashion, and vice-versa.

~* Chapter 4 presents an algorithm for finding 2 minimum-cost spanning tree of an N-node
graph on an ¥ x N mesh-connected computer. The algorithm has the same O() running tire
as the previous algorithms, but it 1s much simpler. -

Locality in Parallel Computation

by
Bruce MacDowell Maggs

S.B., Computer Science and Engineering
Massachusetts Institute of ‘Technology
(1985)

S.M., Electrical Enginecring and Computer Science
Massachusetts Institute of Technology
(1986)

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfilliment of the requirements {or the degree of
Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECIHINOLOGY
September 1989

© Massachusetts Institute of Technology 1989
All rights rescrved

Signature of Author.

Accesion For

NTIS CRA&I
OTIC TAS a
Unanaounced »]
Justification _

e

By
Disteibution |

Avaability Codes

" Avail andjor
Dist Specil

A-l

Department of Electrical Engincering and Computer Science
September 1, 1989

Certified by
Charles E. Leiserson
Associate Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by,

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

Locality in Parailel Computation
by
Bruce MacDowell Maggs

Submitted to the Depuartment of Electrical Engineering and Computer Science
on September 1, 1989, in partial fulfillment of the
requirements for the degree of
Doctor of IPhilosophy

Abstract

This thesis explores strategies for exploiting locality in three ma jor areas of parallel computation:
packet routing, graph algorithms, and network emulations. Each of these areas is covered by a
scparate chapter.

Chapter 1 describes a network-independent approach to the packat-routing problem. Qur
strategy is to partition the problem into tvio stages: a path-selection stage and a scheduling
stage. In the first stage we find paths for the packets with small congestion, ¢, and dilation, d.
Once the pathis are fixed, both are lower bounds on the time required to deliver the packets. In
the second stage we find a schedule for the movement of each packet along its path so that no
Lwo packets traverse the same edge at the same time, and so tha the total time and maximum
queune size required to route all of the packets to their destinations are minimized.

Although path.selection strategies vary from network to network, we show that there ix an
cfficient on-line scheduling algorithm for the entire class of layered networks, When applied to
an N-packet problem, the algorithm produces a schedulz of length O(c + d +log N), with high
probability.

‘The algorithm has many applications to routing and sorting. Among them are the first on-
line algorithms for routing N-packets on an N-node shuffle-exchange graph in O(log N) steps
using constant-size queues and for routing kN packets on an N-node k.dimensional array with
maximum side length Af in O(kM) steps using constant-size queues. The scheduling algorithm
can also be used as a subroutine in sorting algorithms. It yields the first asymptotically optimal
algorithms for sorting on butterfly, shuffie-exchange, and multidimensional array networks using
constant-size queues.

The algorithm can also be applied to the construction of area-universal networks: N-node
networks with VLSI-layout area O(N) that can simulate all other networks with area O(N)
with only O(log N') slowdown.

In Chapter 1 we also prove the existence of a schedule of length O(c + d) for any set of
packets whose paths have congestion ¢ and dilation d (in any network) that uses constant.size
queues. Unfortunately, no efficient algorithin for constructing the schedule is known.

Chapter 2 introduces a model for parallei computation, called the distribated random-access
machine (DRAM), in which the communication requirements of parallei algorithms can be
evaluated. A DRAM is an abstraction of a parallel computer in which memory accesses are
implemented by routing messages through a communication network. It explicitly models the
congestion of messages across cuts of the network.

We introduce the notion of a conservative algorithm as one whose communication require-
ments at each step can be bounded by the congestion of pointers of the input data structure
across cuts of « DRAM. A conservative algorithm is guaranteed not to generate undo conges-
tion in any underlying network. Chapter 2 presents conservative algorithms for a variety of
graph problems. Problems such as computing treewalk numberings, finding the separator of a
tree, and evaluating all subexpressions in an expression tree can be solved in O(log V) steps
for N-node trees by conservative algorithms for an exclusive-read exclusive-write DRAM. More
complex problems such as finding a minimum-cost spanning forest, computing biconnected
components and constructing an Eulerian cycle require O(log? N) steps, for graphs of size N.
For concurrent-read concurrent-write DRAM's, all of these problems can be solved by O(log N')
step conservative algorithms.

Chapter 3 examines the problem of how efficiently a host network can emulate a guest
network, The goal is to emulate T steps of an Ng-node guest network on an Ny node
host network. We call an emulation work-preserving if the time required by the host, Ty is
O(TeNe/Ni) because then both the guest and host networks perform the same amount of
total work (processor-time product), ©(TgNg), to within a constant factor. A work-preserving
emulation is eflicient because it achieves optimal speedup over a sequential eniulation of the
guest, We say that ar emulation is real-time if Ty = O(T'g), because then the host emulates
the guest with constant delay.

Although many isolated emulation results have been proved for specific networks in the
past, and measures such as dilation and congestion were known to be important, the field has
lacked a model within which general results and meaningful lower bounds could be proved. We
attempt to provide such a model, along with techniques for proving lower bounds based on
comparing the locality the networks,

Some of the more interesting and diverse results in Chapter 3 include a proof that a linear
array can emulate a (much larger) butterfly 3n a work-preserving fashion, but that a butterfly
cannot emulate an expander (of any size) in a work-preserving fashion; a proof that a mesh can
be emulated in real time in a work-preserving fashion on a butterfly, even though any O(1)-to-1
embedding of the mesh has dilation Q(log N); and a proof that an N-node butterfly can emulate
an N log N-node shuffle-exchange graph in a work-preserving fashion, and vice-versa.

Chapter 4 presents an algorithm for finding a minimum-cost spanning tree of an N-node
graph on an N x N mesh-connected computer. The algorithm has the same O(N) running time
as the previous algorithms, but it is much simpler.

Keywords: parallel computation, fixed-connection networks, packet routing algorithms, area-
universal networks, fat-trecs, distribu*ed random-access machines, graph algorithms, network
cmulations.

Thesis Supervisor: Charles E. Leiserson
Title: Associate Professor of Computer Science and Engineering

Contents

Acknowledgments)
Introduction 11
Packetrouting e e it e A |
Distributed random-access machines e e e P
Emulations et P . ces . 14
Mesh-based algorithms i ittt iiiiiienens co.o. 16

1 Packet routing algorithms 17
1.1 Introduction....... e e ettt e e .17
ILLL Pastworko ittt ittt iii st i i i . 18

1.1.2 Ourapproach it Cee e e .. 20

1.1.3 Outlineof theresults. ce. e 24

1.2 The existence of asymptotically optimal schedules 26
121 Avpreliminaryresult . . .0 0o e i e it s 27

122 Themainresultttt eneeenns 29

13 On-inealgorithms ittt ve e 36
1.3.1 An O(c+dlogN)onlinealgorithm 35

1.3.2 An O(c+ d+ log N) on-line algorithm for layered networks 37

133 Applicationsttt it i i i e e e 40

14 Routingonmeshes it ittt ittt 41
1.5 Routingonbutterfliesttt 42
1.6 Routing on multidimensional arrays et e 44

6 CONTENTS

1.7 Routing on shuffie.-exchange geaphs T ettt . 47
171 Goodandbudmodes . . .o v i i i vt ittt i 48
172 Alayerednetwork .. .0t i ittt it cri it 49
1.7.3 Pathselectionand congestion . . . v v v v v vt ve e 30
174 Packetsfrombadnodeso i it i i i i e e 52

1.7.5 summ‘(}. $ & & & & & &8 8 & ¢ % 8 & 3 @& 8§ * ¢ 2 S8 s 0 @ " s 8 ¢« & " & & @« &

1,8 Construction of area and volume-universal networks v v v e v v 53

1.9 Sortingon butterflies Ceee e e e ee.. 58
191 Thealgorithmttt tnnennnennns ceve. 58
192 Analysis . o .0 v it i i e e e D)|

1!9.3 noundin‘ the l“d @ 6 & B 4 & % ¥ B P & F 8 W & 9 S N RS s A kR R Y N 61

194 Bounding the congestion at eachswitch &4

1.9.5 DBounding the cumulativedelayovv i N 1) 1
1.9.6 Puttingit all together e - 1
1.10 Counterexamples to on-line algorithms I .
LIL Remarks .« o . 0 o vttt ittt it i ie e e cv e .o 72
2 Distributed random-access machines 78
2.1 Introduction............. Ceeees et e et 7
22 TheDRAMumodel et e B {4
2.3 Conservative algorithms Ceeeen et et . 80
24 List contraction . ., e e e e e .. 8
25 Treecontractionvvvvvuwnnens . cen... 88
26 Treefixcomputations 0o v v vnun C et e ettt e e 93
27 Graphalgorithms ittt ittt it 95
28 Concurrentreadsandwrites. 000t S {1 U
28.1 A newdefinitionofload, e .. 101
2.8.2 A shortcut lemma for concurrent reads and writes 101
2.8.3 A conservative pointer jumping technique Ch e e 102
284 A minimum-cost spanning forest algorithm 104

29 Remarks . . v v v v vt ittt ittt et ettt et e e 107

CONTENTS 7

3 Work-preserving emulations 113
3.1 lulroduction........:....................... 113
3.1.1 The motivation I h &
3.1.2 A closer look at the computational model 117
313 Ourresults Ce e e $ &
3.14 Previouswork. e T V3
32 Lowerbounds........... c e e I
3.2.1 Distance-basedlowerbound o i i oo 122
3.2.2 Congestion-based lowerbound et R A

3.3 Emulations by arrays. e ettt e e e Cee e e 127
34 Emulations by complete binary trees ettt ceees 128
3.4.1 Work-preserving 2mulations of bounded-degree treeso 128
3.4.2 Congestion lower bound for complete ternary trees e 130

3.5 Emulations by butterfly networks N P X
3.5.1 Work-preserving emulations of binary trees e e es o133
3.5.2 Emulationofmeshes et R & &

3.5.3 Embedding the shuffle-exchange graph in the butterfly . . .,135
3.5.4 Layouts for the shuffle.exchange graph with cptimal area and volume . . 138

3.5.5 A work preserving emulation of a shuffle.exchangegraph 138
3.6 Emulations by shuffle-exchangegraphs v vv it 138
3.6.1 Work preserving emulations of arbitrary binary trees e 138

3.6.2 Embedding little butterflies in the shuffla.exchange graph139

3.6.3 Application to sorting on a shuffle.exchangegraph 140

3.6.4 Real time emulations of arrays et r et e e 140

3.6.5 A work preserving emulation of the butterfly e e e 140

4 Minimum-cost spanning tree 141
41 Introduction........... 0t ivennnn. e et 141
4.2 Reduction to a path-findingproblem 142

4.3 Implementation on a mesh-connected computer 143

8 CONTENTS

Directions for further research 148
Packetroutingcc0v v e P C
Distributed random-access machines e e s e oo T
Emulations st ettt a e oo 47

Bibliography 149

/icknowledgments

I am indebted to Charles Leiserson for teaching me the meaning of scholarship. His advice has
not always been easy to take, and I have often momentarily wished that his standards were
not so high. Yet, looking back over the past four ysars, [see that whenever Charles demanded
extra effort, it was well spent. Much of the research in this thesis was done in collaboration
with him.

Working with Tom Leighton has been a pleasure. The things that he pulls fzom his bag o
tricks continue to surprise me.)

Besides Tom and Charles, several others made direct contributions to this thesis. Richard
Koch, Satish Rav, and Arnold Rosenberg ccllaborated on various parts. I and particularly
grateful to Satish for helping work out the details of une section even while he was writing his
own thesis. Tom Cormen and James Park produced some of the figures, and Baruch Awerbuch
graciously served as a thesis reader.

I have benefited from many technical discussions with my friends at MIT and elsewhere.
Alok Aggarwal, Sanjeev Arora, Ravi Boppana, Ron Greenbetg, Jon Greene, Michelangelo
Grigni, Johan Hastad, Joe Kilian, James Park, Nick Pippenger, Abhiram Ranade, John Rompel,
John Reif, Eric Schwabe, and Marc Snir all deserve mention.

During the past four years [have shared office NE{3-313 with Tom Cormen, Sally Goldman,
Alex Ishii, and CIiff Stein. I will miss the camaraderie and hubbub of the office.

The support stafl at the Laboratory for Computer Science has always been helpful. Arline
Benford and Be Hubbard kept me organized, and Sharon Thomas bent the rules for me.

Financial support was provided by an NSF Graduate Fellowship and by the Defense Ad-
vanced Research Projects Agency under Contract N00OO14-87-K-825.

Finally, I would like to thank my family and my wife Ginny for their support on the home-

{ront.

Introduction

This thesis explores strategies for exploiting locality in parallel computation. Locality is perhaps
best illustrated by the telephone system. A local phone call exhibits locality because it is
transmitted over a small physical distance and through few switching stations. On the other
hand, a long distance call may pass through many switching stations and span the globe. The
telephone company exploits the aggregate locality of a typical set of phone calls by allocating
more resources to local calls than to long distance calls. The communications hardware is
arranged in a hierarchy, with bushy local networks at the bottom and a sparser satellite system
at the top. The phone system itself may be said to exkibit locality in the sense that it reflects
the locality of a typical set of calis.

The routing network in a paral'sl computer has a job much like that of the phone system.
It must deliver packets of information between different processors. In this thesis, however, we
shall restrict our attention to networks that are more tightly coupled than the phone system.
These networks route packets to their destinations via a series of globally synchronized time
steps. We model a routing network as a graph, where tl:e nodes correspond to processors or
switches, and the edges correspond to wires. At each step a packet can either traverse an edge
or wait in a qucue, and each edge can transmit at most one packet. The time to deliver a sat of

packets is the equal to the number of steps required for every packet e reach its destination.

Packet routing

Two important measures of the locality of a set of packets are its congestion and dilation. The
congestion, c, of a set of packets is the maximum number of packets that use any edge of the

network. The dilation, d, is the length of the longest path taken by any packet. Both of these

11

12 INTRODUCTION

measures are [cwer bounds on the time required to deliver the messages. The congestion is
a lower bound because ¢ packets must pass through some edge, and at most one packet can
traverse the edge at cach time step. The dilation is a lower bound because some packet must

travel a distance of d and it can travel a distance of at most one in each time step.

Chapter 1 describes a network-independent approach to the packet routing problem. Our
strategy is to partition the problem into two stages: a path celection stage and a scheduling
stage. The path-selection stage varies from network to network. Its goal is to find a set of
paths for the packets that exhibits locality, i.e., has smali congestion and dilation. The goal of
the second stage is to determine when each packet should move, and when it should wait in a
queue. The second stage must ensure that at most one packet traverses each edge at each time
step. It should exploit the locality present in the paths produced by the first stage, i.e., the
time to deliver the packets should be as close to the lower bounds ¢ and d as possible and the

queue size should be minimized.

‘The {ocus of Chapter 1 is on the second stage. Two main scheduling results are proved thers,
First we show that there is a schedule of length O(c + d) for any set of packets with congestion
¢ and dilation d (in any network) that uses constant-size queues. Unfortunately, no efficient
algorithm for constructing it is known. However, for the special case of layered neiworks, we
show that there is an efficient randomized algorithm for routing N packets in O(c+d +log N)

steps using constant.size queues.

The algorithm for routing packets on layered networks has many applications to routing
and sorting. Among them are the first on-line algorithms for routing N-packets on an N-node
shuffle-exchange graph in O(log N) steps using constant-size queves and for routiny kN packets
on an N-node k-dimensional array with maximurm side length M in O(kM) steps using constant-
size queues. The routing algorithm can also be used as a subrcatine in sorting algorithms. It
yiclds the first asymptotically optimal algorithms for sorting on buiterfly, shuffle-exchange, and

multidimensional array networks using constant-size guenes.

A second major application area is in the construction of area-universal networks: N-node
networks with VLSI-layout area O(N) that can simulate all other networks with arca O(N)
with only O(log N} slowdown. (The generalization to three dimensions is straighiforward.)

These networks are area-universal precisely because they display the kinds of locality present

INTRODUCTION 13

in the phone system. The communications hardware is arranged in a hierarchy, with most of it

devoted to making local connections.

Distributed random-access machines

Another important measure of locality is the load factor of a set of packets. Before defining
the load factor, we need a few other notions. A cut S of a network is a subset of the nodes
of the network. The capacity cap(S) is the numbes of wires connecting processors in S to the
rest of the network, 3. The load of a set M of packets on a cut S, load(M, S), is the number
of packets in Af that must cross the cut S. The load factor of M on §, A(M,S) is the ratio
of the load to the capacity, A(M, S) = load(f,§)/cap(S). The load factor of M on the entire
network is the maximum load factor over all cuts, A(M) = maxsload(M,S). The load factor is
a lower bound on the congestion of any set of paths for the packets, and thus is a lower bound
on the time to deliver the packets.

Chapter 2 introduces a model called the Distributed Random-Access Machine (DRAM)
in which time required to deliver a set of packets is equal to its load factor. A DRAM is an
abstraction of a parallel computer in which memory accesses are implemented by routing packets
through a communication network. The model was originally intended to be an abstraction of a
class of area-universal networks called fat-trees {29, 56). Fat-trces are well inodeled by DRAM’s
becruse, as we shall see in Chapter 1, the time to deliver a set M of packets on an N-node
fat-tree is O(A(M) + log N'), with high probability.

The notion of load factor can be extended to measure the locality of a data structure
embedded in a parallel computer. A natural way to embed a data structure in a DRAM is to
put one record of the data structure into each processor. The record can contain data, including
pointers to records in other processors. We measure the locality of an embedding by trealing
the data structure as a set of pointers and generalizing the concept of load factor to sets of
pointers. The load of a set P of pointers across a cut S, denoted load(P, §), is the number of
pointers in P from a processor in S to a processor in §, or vice versa. The load factor of P on
the entire DRAM is A(P) = maxgload(P, S)/cap(S). The load factor oi a data structure is the
load factor of the set of its pointers.

A conservative algorithm is a DRAM algorithm in which the load factor of the set of mem-

14 INTRODUGTION

ory accesses produced b each step does not exceed the load factor of the input data structure.
A conservative algorithm exploits the locality in the input data structure because it never pro-
duces more congestion across cuts of the DRAM than is implicit in the input data structure,
Congequently, a conservative algorithm is guaranteed not to produce undue congestion in any
underlying network. With the help of a lemima for “shortcutting™ pointers in a data struc-
ture without increasing its load, wa design fast conservative algarithms for a variety of granh
problems. Problems such as computing treewalk numberings, finding the separator of a tree,
and evaluating all subexpressions in an expression tree can be solved in O(log N) steps for
N-node trees by conservative algorithms for an exclusive-read exclusive-write DRAM. More
complex problems such as finding a minimum.cost spanning forest, computing biconnected
components and constructing an Eularian cycle require O(log? N') steps, for graphs of size N.
For concurrent-read concurrent-write DRAM’s, all of these problems can b2 solved by O(log N)

step conservative algorithms,

Emulations

Of particular interest is the special case where the embedded data structure is a network. An
cinbedding is a map from a guest network to a host network that takes nodes of the guest to
nodes of the host, and edges of the guest to paths in the host. Three important measures of an
embedding are its congestion, dilation, and load. The congestion and dilation of the paths are
analogous to the congestion and dilation defined for the paths taken by a set of packets. The
lcad of an embedding is the maximum number of guest nodes mapped to any one of the host
nodes. The assignment of two meanings to the word load is unfortunate, but well established.
In this thesis, the intended meaning should always be clear from the context. Furthermore, the
load of a set M of packets on a cut S is denoted by load(Af, §), while the load of an embedding
is denoted by /.

A guest network is typically embedded in a host network so that the host can emulate
some computation to be performed by the guest. An important consequence of the scheduling
results of Chapter 1 is that if a guest network can be embedded in a host network with load I,
congestion ¢, and dilation d, then the host can emulate the guest with slowdown O(l + ¢ + d).

Most of the efficient emulation schemes that we know of arise directly from an embedding of

INTRODUCTION 18

a guest network in 2 host with small congestion, dilation, and load. As we shall sce, however,
a good embedding of the guest in the host is not required for the host to perform an efficient

emulation of the guest,

Chapter 3 examines the problem of how sfficiently a host network can emulate a guest
network. The goal is to emulate Tg steps of an Ng-node guest network on an Ny node
host network. We call an emulation work-preserving if the time required by the host, Ty is
O(ToNG/Ni) because then both the guest and host networks perform the same amount of
total work (processor-time product), 8(TgNg), to within a constant factor. A work-preserving
emulation is efficient because it achieves optimal speedup over a sequential emulation of the
guest. We say that an emulation is real-time if Ty = O(TG), because then the host emulates

the guest with constant delay.

Although many isolated emulation results have been proved for specific networks in the
past, and measures such ac dilation and congestion were known to be important, the field has
lacked a model within which general results and meaningful lower.bou:\ds could be proved. We
attempt to provide such a model, along with techniques for proving lower bounds based on
comparing the locality the networks. As a general rule, networks that exhibit locality are easier

to emulate thaa those that do not.

‘The simplest measure of the locality of a network is its diameter. Let §(u,v) denote the
distance between a pair of nodes u and v, i.e., the length of the shortest path between u and
v. The diameter, D, of a network is the maximum over all pairs (u,v) of the distance between
u and v, D = max(y,) §(%,v). In general, a network with large diameter exhibits more locality
than a network with small diameter. For example, a lincar array exhibits more locality than a

shuffle-exchange graph.

The ezpansion rate is another important measure of the locality of a network. Let B.(u)
denote the ball of radius r around a node u, i.e., the set of nodes within distance r of u,
B.(u) = {v|6(u,v) < r}. For aset S of nodes, the necighborhood of S, N(S), is the set of nodes
within a distance of 1 of some node in $, excluding ihose nodes in §, N(S) = UyesBi1(u)) - S.
We say that an n-node network has expansion rate ¢ if for every set S of size at most n/2, the
size of the ncighborhood of § is a least £]|Sl. We call a network for which the expansion rate ¢

is at least some fized positive constant an expander. An expander exhibits little locality.

16 INTRODUCTION

Some of the more interesting and diverse results in Chapter 3 include a proof that a linear
array can emulate a (much larger) butterfly in a work-preserving fashion, but that a butterfly
cannot emulate an expander (of any size) in a work-preserving fashion; a proof that a mesh can
be emulated in real time in a work-preserving fashion on a butterfly, even though any O(1)-
to-1 embedding of the mesh in a butterfly hax dilation Q{log N); and a proof that an N-node
butterfly can emulate an N log N-node shuffie-exchange graph in a work-preserving fashion,

and vice-versa.

Mesh-based algorithms

Chapter 4 presents an algorithm for finding 2 minimuin-cost spanning tree of an N-node graph
on an N X N mesh-connected computer. The algorithm has the same O(N) running time as
the previous algorithms, but it is much simpler. In VLSI models, the mesh is the ultimate local
network because each processor in the mesh is connected to a small.number of neighbors by

minimum length wires.

Chapter 1

Packet routing algorithms

1.1 Introduction

Figure 1-1 illustrates the standard graph model for packet routing. The shaded nodes labeled
1 through 5 represent processors or switches. The edges between the nodes represent wires. At
the end of each edge is an edge gueue that can hold a small number of packets (in this example,
two). A packet is depicted by a square box containing the label of its destination. Before the
routing begins, packets are stored at their origins in special initial queues. For example, packets
4 and 5 are stezed in the initial queue at node 1.

The goal is to route each packet from: its origin to its destination via a series of synchronized
time steps. At each step at most one packet can traverse cach edge. Furthermore, a packet can
traverse an edge only if at the beginning of the step its edge queue is not full. Upon traversing
the last edge on its path, a packet is removed from the edge queue placed in a special final queue
at its destination. For simplicity, the final queues are not shown in Figure 1-1. Independent
of the routing algorithm used, the size of the initial and final queues are determined by the
particular packet routing problem to solved. Thus, any bound on the maximum quecue size
required by a routing algorithm refers to the edge qucues only.

The task of designing an cfficient packet routing algorithm is central to the design of most
large-scale general-purpose parallel computers. In fact, even the basic unit of time in some

parallel machines is measured in terms of how fast the packet router operates. For example,

This chapter describes joint rescarch with Tom Leighton and Satish Rao [53).

17

18 CHAPTER 1. PACKET ROUTING ALGORITHMS

- ——

Figure 1.1: A graph model for packet routing.

the speed of an algorithm in the Connection Machine is often measured in terms of rowting
cycles (roughly the time to route a random permutation) or petit cy;lc: (the time to perform
an atomic step of the routing algorithm). Similarly, the performance of machines like the BBN
Butterfly is substantially influenced by the speed and rate of successful delivery of its router.
Packet routing also provides an important bridge hetween theoretical computer science
and applied computer science; it is through packet routing that a real machine such as the
Connection Machine is able to simulate an idealized machine such as the CRCW PRAM. More
generally, getting the right data to the right place at the right tinie is an important, interesting,
and challenging problem. Not surprisingly, it has also been the subject of a great deal of

research,

1.1.1 Past work

The first major result in packet routing is due to Benes [10] who showed that the inputs
and outputs of a Benes network can be connected in any permutation by a set of disjoint
paths. Waksman [98] then gave a simple off-line algorithm for finding the paths in linear time.
Given the paths, it is straightforward to route a permutation of packets from the inputs to the
outputs of an N-node Benes network in O(log N') steps using queues of size 1. Although the
inputs comprise only O(N/log N) nodes, it is possible to route any permutation of N packets

1.1. INTRODUCTION 19

in O(log NV) steps by pipelining O(log ') such permutations. Unfortunately, no efficient on-line
algorithm for finding the paths is known.

Shortly thereafter, Batcher [9) devised an elegant and practical on-line algorithm for sorting
N packets on an N-node shuffie-exchange graph in log? N steps using queues of size 1. The
algorithm can be used to route any permutation of packets by sorting based on destination ad-
dress. The result extends to routing many-one problems provided that (as is typically assumed)

combining can be used to merge packets the* have a common destination.

No better deterministic algorithm was found until Ajtai, Komlos, and Szemeredi (2] solved
a classic open problem by constructing an O(log N')-depth sorting network. Leighton [47] then
used this O(N log N')-node nciwork to construct a degree 3 N-node network capable of solving
any N-packet routing problem in O(log N') steps using queues of size 1. Although this result is
optimal up to constant factors, the constant {actors are quite large and the algerithm is of no
practical use. Hence, the effort to find fast deterministic algorithms has continued. Recently
Upfal discovered an O(log N')-step algorithm for routing on an expander-based network. called
the multibutterfly [95). Tt gorithm solves the routing problem directly without reducing it
to sorting, and the constant factors are much smaller than those of the AKS-based algorithms.
In {52), we show that the multibutterfly is fault tolerant and improve the constant factors in
Upfal's algorithm.

There has also been great success in the development of efficient randomized packet routing
algorithms. The study of randomized algorithms was pioneered by Valiant and Brebner [97] who
showed how to route any permutation of N packets in O{log N) steps on an N-node hypercube
with queues of size O(log N) at each node. Although the algorithm is not always guarantced
to work, it is guaranteed to work with probability at least 1 — 1/N for any permutation.
‘This result was improved in a succession of fundamental papers by Aleliunas (3], Upfal [94),
Pippenger [76), snd Ranade (81). Aleliunas and Upfal developed the notion of a delay path and
showed how to route on the shuffle-exchange and butterfly graphs (respectively) in O(log N)
steps with queues of size O(log /7). Pippenger was the first to eliminate the need for large
queues, and showed how to route on a variant of the butterfly in O(log N) steps with queues
of size O(1). Ranade showed how combining could be used to extend the Pippenger result to

include many-one routing problems, and tremendously simplified the analysis required to prove

20 CHAPTER 1. PACKET ROUTING ALGORITHMS

such a result. As a consequence of Ranade’s work, it has finally become possible to simulate a
step of an N-processor CRCW PRAM on an N-node butterfly or hypercube in O(log N) steps
using constant-size quencs on each edge.

Concurrent with the development of these hypercube-related packet routing algorithms has
been the development of algorithms for routing in meshes. The randomized algorithm of Valiant
and Brebner can be used to route any permutation of N packets on a VN x VN mesh in
O(VN) steps using quenes of size O(log N). Kunde [43] showed how to route deterministically
in (24 £)VN steps using queues of size 0(1/¢). Also, Krizanc, Rajasekaran, and Tsantilis (41]
showed how to ranidomly route any permntation in 2V + O(log N) steps using constant size
queues. Most recently, Luighton, Makedon, and Tollis discovered a deterministic algorithm for
routing any permutation in 2V/N — 2 steps using constant-size queues [49), thus achieving the

optimal time bound in the worst case.

1.1.2 Our approach

One deficiency with the state-of-the-art in packet routing is that aside from Valiant's paradigm
of “first routing to a random destination,” all of the algorithms and their analyses are very
specifically tied to the network on which the routing is to take place, as well as to the requirement
that packets are first routed to destinations that are (in some sense) random. For example, the
butterfly routing clgorithms are all quite different than the mesh algorithms in the way that
queue size is kept constant. Moreover, the butterfly and hypercube algorithms are 2o specific to
those networks that no O(log N)-step constant-queue-size algorithm was known for the closely
related shuffie-exchange graph. The lack of a good routing algorithm for the shuffle-exchange
graph is one of the reasons that the butterfly is preferred to the shuffie-exchange graph in
practice,

In this chapter, we take a significant step towards the development of a universal approach
to packet routing. Our approach to the problem differs from previous approaches in that we
separate the process of selecting packet paths from the process of timing packet movements
along the paths. More precisely, given any underlying netvork, and any selection of paths for
the packets, we study the problem of timing the movement of the packets so as to minimize the

total time and maximum queue size needed to route all the packets to their correct destinations.

1.1. INTRODUCTION 2]

Figure 1-2: A set of paths for the packets. Each packet follows a shortest path to its destination.
The dilation is d = 3 and the congestion ic ¢ = 3.

Of course, there must be some correlation between the performance of the algorithm and
the sclection of the paths. In particular, the maximum distance, d, traveled by any packet
is always a lower bound on the time required to route all packets. We call this distance the
dilation of the paths. Similarly, the largest number of packets that must traverse a single edge
during the entire course of the routing is a lower bound. We call this number the congestion,
¢, of the paths.

Viewed in terms of these parameters, then, a routing problem can be broken into two stages.
In Stage 1, we select paths for the packets so as to minimize ¢ and d. In Stage 2, we scheduie
the movement of the packets so as to minimize the total time and maximum queue size. To
illustrate this two stage approach, let us return to the routing problem of Figure 1-1.

Figure 1-2 shows one way of choosing the paths for the packets. Here, each packet takes a
shortest path from its origin to its destination. For example, packet 1 follows a path from node
3 to 2 to 4 to 1. Since no packet traverses more than three edges, the dilation is d = 3. Packets
3,4, and 5 all traverse the edge from 1 to 2, but no more than three packets traverse any other
edge. Thus, the congestion is ¢ = 3.

A schedule for the packets is displayed in Figure 1-3. A schedule simply specifies which

»n
»

CHAPTER 1. PACKET ROUTING ALGORITHMS

time step
1 2 3 4 5§

X X X
X
X X X
X X
X XX

packet

n A~ W N

Figure 1-3: A schedule for the packets. An X in row p and column 1 indicates that at time t
packet p moves. A blank indicates that it waits, .

packets move and which wzit at each time step. An X in row p and column ¢ indicates that
at time t packet p traverses an edge and enters the queue at the end of that edge. A blank
indicates that at time ¢ packet p waits in a queue. For example, packet 3 moves at time step 1,
waits at steps 2 and 3, and then moves again in steps 4 and 5.

The step-by-step progress of the packets as they follow the paths from Figure 1.2 according
to the schedule of Figure 1-3 is illustrated in Figure 1.4,

Part (a) shows the packets in their initial queues before the routing begins. In the first step,
packet 1 takes the edge from node 3 to node 2, 3 takes the edge from 5 to 1, and 4 takes the
cdge from 1 to 2. Packets 2 and 5 must wait because the first edges on their paths are taken
by packets 1 and 4, respectively.

The positions of the packets at the end of time step 1 are shown in part (b). In step 2,
packets 1, 2, and 5 move, while packets 3 and 4 wait. Packet 2 reaches its destination, is

removed from the queue at the end of the edge from 3 to 2, and enters the final queuse for node
2.

At the end of step 2, the packets are positioned as shown in part (c). Note that packet 2,

which residex in the final queue for node 3, is not pictured. In step 3, packets 1 and 4 move,

1.1, INTRODUCTION 23

0] o)

B2

{c))

1 Gl>(2)

()

Figure 1-4: The step-by-step progress of the packets. The positions of the packets at the e¢nds
of steps 0 through 4 are shown in parts (a) through (e) respectively.

24 CHAPTER 1. PACKET ROUTING ALGORITHMS

but packet I must wait because the qucue that it wishes to enter is full at the beginning of the
step.

After gtep 3, only packets 3 und 5 remain en route. Both packets move in step 4, and reach
their acstinations in step 5. Their positions at the ends of steps 3 and 4 are show in parts (d)
and (), respectively.

For many networks, Stage 1 is easy. We simply use Valiant’s paradigm of first routing to a
random destination, and then routing to the currect destination. It is easily shown for meshes,
butterfies, shuffle-exchange graphs, etc,, that this approack yields values of ¢ and d that are
within a small constant factor of the diameter of the network, which is as well as can be done.
Morcover, this technique also usnally works for inany-one problems provided that the address
spaze is randomly hashed.

Stage 2 has traditionally been the hard part of routing. Curiously, however, we have found
that by ignoring the underlying network and the method of path selection, Stage 2 actually
becomes casier to solve! Hence we will be able to obtain r.sults for rout.ing that are both simpiler
and {ar more general than existing approaches. Among other things, we will be able to route
on the N-node mesh in O(VN) steps using constant size Gueues with the same algocithm that
uses O(log N) steps and constant-size queues on the butterfly. We will alzo be able to route on
the shuffiz-exchange graph in O(log N) steps with constant.size queues. Also, by shewing how
to route efficiently on a fat-tree, we provide the first examples of volume and area-universal

networks that require only O(log N) slowdown.

1.1.3 Outline of the results

Our most diffizult result iz a proof that any set of packets whose paths have congestion ¢ and
dilation d can be scheduled so as to complete the routing in O(c + d) steps using constant-size
queues. This result is optimal up to constant factors, and substantially improves the naive
bound of O(ed) steps and O(c) size queues, Unfortunately, the result is highly nonconstructive,
and therefore is useful only if substantial amounts of off-line computation are available for the
routing. On the other hand, the result is robust in the sense that it provides near-optimal
schedule of packet movements for any sot of paths and any underlying network. Such robustness

is particularly useful when dealing with routing problems on arbitrary distributed networks as

-]

L1. INTRODUCTION 25

in (54). The proof of the result is contained in Section 1.2,

We do not know whether or not there is an on-line algorithm that can route any set of paths
in O(c + d) steps with constant-size queues. It is not difficult to devise a randumized on-line
algorithm to schedule any set of N paths in O(c+ dlog V') steps using quenes of size O(log N).
In special cases, however, we can do better. For example, a slight variant of Ranade's algorithm
can be used to schedule on-line any set of N paths on a bounded-degree layered network in
O(c + d + log N') steps using constant.size queues. By a layered network, we mean a network
in which each edge connects a level i node to a level i + 1 node, where the level numbers range

from 0 to d. For example, the butterfly is layered this fashion. The algorithm is randomized,

but requires only ©(log? N') bits of randomness to succeed with high probability. The proof of
this result is included in Section 1.3. Curiously, the proof is simpler than the previous proof of
the same result applied specifically to routing random paths in butterfies [81). (The fact that
Ranade’s algorithm can be used in this general context has also beer observed by Ranade [82).)

The on-line algorithm for layered networks can immediately be applied to obtain good
routing algorithms for meshes and butterflies. With some extra effort, it can be applied to
obtain the first algorithm for routing AN packets on an N-node k-dimensional array with
maximum side length A in O(kA) steps. constant.size queues, and for routing N-packets on
an N-node shuffle-exchange graph in O(log N) steps using constant-size queues. It can also be
applied to construct a class of networks that are arca universal in the sense that the network in
the class with N processors has area O(N), and can, with high probability, simulate in O(log N)
steps each step of any other network of area O(N). An analogous result is shown for & class
of volume-universal networks. The routing algorithmn is used as a subroutine in algorithms
for sorting on butterflies and multidimensional arrays. The details of these applications are

included in Sections 1.4 through 1.9.

This thesis leaves open the question of whether or not there is an on-line algorithm that
can schedule any set of paths in O(c + d) steps using constant-size queues. We suspect that
finding such an algorithm (if one exists) will be a challenging task. Our negative suspicions
are derived from the fact that we can construct counterexamples to :iost of the simplest on-
line algorithms. In other words, for several natural on-line algorithms (including the algorithm

described in Section 1.3) we can find packet paths for which the algorithm will construct a

26 CHAPTER 1. PACKET ROUTING ALGORITHMS

L

schedule using substantially more than Q(c + d +log N) steps. Several of the counterexamples
arc included in Section 1.10.

1.2 The existence of asymptotically optimal schedules

"he main result in this section is a proof that for any set of packets whose paths are edge-
simple! and have congestion ¢ and dilation d, there is a schedule of length O(c + d) in which
at most one packet traverses cach edge of the network at eack step, and at most O(1) packets
wait in each queue at each step. Note that there are no restrictions on the size, topology, or
degree of the network or on the number of packets.

Our strategy for constructing an efficicat schedule is to make a succession of refinements to
the “greedy™ schedule, Sy, in which each packet moves at every step uniil it reaches its final 1
destination. This schaduleis as short as possible; its length is only d. Unfortunately, as many as
¢ packets may use an edge at a single time step in So, whereas in the final schedule at most one
packet is allowed to use an edge at cach step. Each refinement will bring us closer to meeting
this requirement by bounding the congestion within smaller and smaller frames of time.

The proof uses the Lovasz local lemma (89, pp. 57-58] at each refinement step. Given a
set of “bad” events in a probability space, the lemma provides a simple inequality which when
satisfied guarantees that with probability greater than zero, no bad event occurs. The inequality
relates the probability that cach bad event occurs with the dependence among them. A set of
events A;,...,Apn in a probability space has dependence at most b if every event is mutually
independent of some set of m—b other bad events. The lemma is nonconstructive; for a discrete
probability space it proves that there is some elementary outcome that is not in any bad event,

but does not specify that outcome.

Lemma 1 (Lovasz) Let A;,...,An be a set of “bad” events each occurring with probability
p with dependence at most b. if 4pb < 1, then with probability greaier than zero, no bad event

occurs.]

YAn edge-simple path uses no edge more than once.

1.2. THE EXISTENCE OF ASYMPTOTICALLY OPTIMAL SCHEDULES 27

1.2.1 A preliminary result

Before proving the main result of this section, we show that there is a schedule of length
(c + d)200oe*(c+d)) that uses queues of size log(c + d)200es*(c+)), This preliminary result is
substantially simpler to prove because of the relaxed bounds on the schedule length and queue

size. Nevertheless, it illustrates the basic ideas necessary to prove the main result.

Theorem 2 For any sct of packels whose paths are cdge-simple and have congestion ¢ and
dilation d, ther~ :- a schedule in which at most one packet traverses cach edge at cach step with
length (c + d)200e8*(e+)) and mazimum queuc size log(c + d)20008™ (cid),

Proof: For simplicity, we shall assume without loss of generality that ¢ = d, so that the bouads
on the length and queue size are d20096°4) and (log d)200°8") respectively.

The proof has the following outline. The first step is to assign each packet a delay chosen
randomly, independently, and uniformly from the range 1, ad], where a is a fixed constant that
will be determined later. In the resulting schedule, $, a packet assigned a delay of z waits
in its initial queue for z steps, then moves on to its destination without waiting again until it
enters is final queue. The length of Sy is at most (1 4 a)d. Next we break the schedule into
(1+ a)d/logd sets of log d consecutive time steps, as shown in Figure 1-5. Each of these sets is
called a logd-frame. We use the Lovasz local lemma to show that there is some way of choosing
the initial delays so that in each of these log d-frames at most logd packets pass through any
edge. Finally, we view cach logd-frame as a routing problem with dilation logd and congestion
log d, and solve it recursively.

To apply the Lovasz Local Lemma, we associate a bad event with cach edge. The bad event
for edge e is that more than logd packets use ¢ in any logd-frame. To show that there is a
way of choosing the delays so that no bad event occurs, we need to bound the dependence, b,
among the bad events and the probability, p, of each individual bad event occurring.

The dependence calculation is straightforward. Whether or not a bad event occurs depends
solely on the delays assigned to the packets that pass through the corresponding edge. Thus,
two bad events are independent unless some packet passes through both of the corresponding
edges. Since at most ¢ = d packets pass through an edge, and eacl of these packets passes

through at most d other edges, the dependence, b, of the bad events is at most e¢d = d2.

28 CHAPTER 1. PACKET ROUTING ALGORITHMS

1 time step Q +a)d
\ 4
packet
-—>
logd

Figure 1-5: Schedule S, The schedule is derived from the greedy schedule, So, by assigninyg
each packet a random initial delay in the range {1,ad]. We use the Lovasz local lemma to show
that within each logd-frame, at most log d packets pass through each edge.

Computing the probability of cach bad event is a little trickier. Let p be the probability of

the bad event corresponding to edge ¢, Then

e Qkal(¢) (loty
= logd \logd/ \ ad)

This expression is derived as follows. ‘Chere are (1 + a)d/logd diffcrent logd-frames, and we
bound p by summing over all frames the probability that more than log d packets pass through e
in the frame. The number of puckets passing through e in the frame has a binomial distribution.
There are d independent Berncalli trials, one for each packet that uses ¢. Since at most logd
of the possible ad delays will actually send a packet through ¢ in the frame, each trial succeeds
with probability logd/ad. (Here we use the assumption that the paths are edge-simple.) The
probability of more than log d successes is at most (h‘: J (%‘})hd.

For sufficiently large a, the product 4pb is less than I, and thus, by the Lovasz Local
Lemma, there is some assignment of delays such that at most logd packets use any edge in any
log d-frame.

Each logd-frame can be viewed as a separate scheduling problem where the origin of a
packet is its location at the beginning of the frame, and its destination is its location at the
end of the frame. If at most logd packets use each edge in a log d-frame, then the congestion of
the problem is logd. The dilation is also logd because in logd time steps a packet can move a
distance of at most logd. In order to schedule each frame independently, a packet that arrives

at its destination before the last step in the rescheduled frame is forced to wait there until the

O

1.2. THE EXISTENCE OF ASYMPTOTICALLY OPTIMAL SCHEDULES 29

next frame begins.

All that remains is to bound the length of the schedule and the size of the queues. The
recursion proceeds to a depth of O(log” d) at which point the frames have size O(1), and at
most O(1) packets usc each edge in each frame. The resulting schedule can be converted to one
in which at most one packet uses cach edge in each time step by slowing it down by a constant
factor. The length of the final schedule is 220006°), The bound on the queue size follows from
the observation that no packet waits at any one spot (other than its origin or destination) for
more than (logd)2°028°9) consecutive time steps, and in the final schedule at most one packet

traverses cach cdge at each time step. a

1.2.2 The main result

Proving that there is a schedule of length O(c + d) using constant-size queues is more difficult.
Removing the 200es*(c¢+4)) factor in the length of the schedule seems to require delving into
sccond order terms in the probability calculations, and reducing the queue size to O(1) mandates
greater care in spreading delays out over the schedule.

Before proceeding, we need to introduce some notation. The frame congestion, C, in a
T-frame is the largest number of packets that traverse any edge in the frame. The relative
congestion, R, in a T-frame is the ratio C/T" of the congestion in the frame to the size of the

frame.

Theorem 3 For any sel of packels whose paths are edge-simple and have congestion ¢ and
dilation d, there is a schedule in which at most one packet traverses cach edge of the nelwork

al each step with length O(c + d) and mazimum queue size O(1).

Proof: To make the proof more modular, bounds on frame size and relative congestion after
cach step in the construction are stated as lemmas. These lemmas and their proofs are included
within the proof of the theorem. We assume without loss of generality that ¢ = d, so that the
bound on the length of the schedule is O(d).

As belore, the strategy is to make a succession of refinements to the greedy schedule, Sp. The
first refinement is special. It transforms Sp into a schedule Sy in which the s2lative congestion

in each logd-frame is at most O(1). Thereafter, each refinement transforms a schedule S; with

30 CHAPTER 1. PACKET ROUTING ALGORITHMS

S. (0

A
Y

Q)

i+l r“")

<>

i+l
l(+)

Figure 1.6: A refinement step. Each refinement transforms a schedule S; into a slightly longer
schedule Siyy. The frame size is greatly rcduco.:d in S:Z"h yet the relative congestion within a
frame remains about the same, i.e., J+1) & JU) and p(i+1) = £0),

relative congestion at most r(i) in any frame of size I{} or greater into a schedule Siyy with
relative congestion at most r(+1) in any frame of size I("+1) or greater, where r(i+1) s £(i) and
1641 ¢ 1), a5 shown in Figure 1-6. As well shall sce, after j refinements, where j = O(log® d),
we obtain a schedule S5 with relative congestion O(1) in every frame of size ko cr greater, where
ko is some constant. From Sj it is straightforward to construct a schedule of length O(c + d)
in which at most one packet traverses each edge of the network at each step, and at most O(1)
packets wait in each queue at each step.

At the start, the relative congestion in a d-frame of Sy is at most 1. We begin by assigning
cach packet a random delay chosen uniformly from 1 to d at the beginning of the greedy schedule
Sg. Using the Lovasz local lemma, it is possible to show that there is some way of choosing the
delays so that in the resulting schedule Sy, the relative congestion is at most r(!) = O(1) in any
frame of size I(") = logd or greater.

Next, we repeatedly refine the schedule to reduce the frame size. As we shall see, the relative

congestion r(i+1) and frame size (1) for schedule S;4, are given by the recurrences

Gy _) O i=1
014+ 0(1)/\/log I0) i>1

1.2. THE EXISTENCE OF ASYMPTOTICALLY OPTIMAL SCHEDULES 31

and

() - logd i=1
log* I} i>1
which have solutions I0) = 0(1) ard rli) = O(1) for sore 7, where j = O(log" d).

We have not explicitly defined the values of r(¥) and /() for which the recursion terminates.
However, in several places in the proof that follows we implicitly use the fact that () is
sufficiently large or r(} is sufficiently small that some inequality holds. The recursion terminates
when the first of these inequalities fails to hold. When this happens, one of (i) or il is O(1),
which implies that the other is also.

An important invariant that we main maintain throughout the construction is that in sched.
ule Siy1 every packet waits at most once every 10} steps. As a consequence, a packet waits at
most once every (1) steps in Sy, which implies both that the queues in S; cannot grow Jarger
than O(1) and that the total length of S; is O(d). Schedule S; almost satisfies the requirement
that at most one packet traverse each edge in each step. By simulating cach step of S; in O(1)
steps we can meet this requirement with only a factor of 2 increase in the queue size and a
factor of O(1) increase in the running time.

The rest of the proof describes a refinement step in detail. For ease of notation, we use /
and r in place of J() and r(d,

The first step in the ith refinement is to break schedule S: into blocks of 213 4212 = |
consccutive time steps. Each block is reschedulad independently.

For cach block, each packet is assigned a random delay chosen independently and uniformly
from 1 to I. A packet assigned a delay of z must wait for z steps at the beginning of the block.
In order maintain the invariant that in schedule S;4y every packet waits at most once every
10 steps, the packet is not delayed for z consccutive steps at the beginning of the block, but
instead a delay is inserted every J steps in the first zI steps of the block.2 A packet that is
delayed z steps reaches its destination at the end of the block by step 213 4212 — I + z. Since

some packet may have delay z = [, the rescheduled block must have length 213 4 212,

2Before the delays for schedule S,41 have been inserted, a packet is delayed at most once in each block of S,.
Prior to inserting each new delay into a block, we check if it is within J{) steps of the single old delay. If the
new delay would be too close to the old delay, then it is simply not inserted. The loss of a single delay in a block
has a negligible effect on the probability calculations in the lemmas that follow.

32 CHAPTER 1. PACKET ROUTING ALGORITHMS

1 r time sicp WP w2
\ v \

v
packet | r(1+1/D) r

7

Figure 1.7: Boundsx on frame size and relative congestion after inserting delays into S;. Here
I =log? I and ry = r(1+ O(1)/ViogT).

In order to Independently reschedule the next block, the packets must reside in exactly the
same quetes at the end of the rescheduled block that they did at the end of the block of S;.
Since some packets arrive early, they must be slowed down. Thus, if a packet is assigned delay
xz, then a delay is inserted every I steps in the last /(I — x) steps of the block. Note that at the
beginning of the first block and end of the last block, it is not necessary to separate the delays
by I steps, because the packete reside in their initial and final queues, respectively.

Lemmas 4 through 6 bound the frame size and relative congestion in various parts of the
block after the delays are inserted into S;. The bounds are shown in Figure 1-7. Inserting
dclays may increase the relative congestion in the I? steps at the beginning and end of each
block. Lemma 4 shows that by increasing the frame size from I to J2 we can bound the relative
congestion in these regions by r(1 + 1/J). Lemma 6 shows that between the first and last
I? steps we can decrease the frame size from J to log? I, while only increasing the relative
congestion in each frame from r to r(1 + O(1)/TogT). The proof of Lemma 6 uses Lemma 5

to bound the relative congestion over a wide range of frame sizes.

Lemma 4 For any choice of delays, the relative congestion in any frame of size I* or greater

after the delays are inscrted is at most r(1+1/1).

Proof: After the delays are inserted, a packet can use an edge in a T'-frame if it used the edge
in the frame or in any of the I steps before the frame in S;. Thus, at most r(T + I) packets

can use an edge in the T-frame. For T' > I2, the relative congestion is at most r(1+41/1). O

Lemma 5 In any schedule, if the relative congestion in every frame of size T to 2T — 1 is at

1.2. THE EXISTENCE OF ASYMPTOTICALLY OPTIMAL SCHEDULES 33

most R then the relative congestion in any frame of size T or greater is at most R.

Proof: Consider a frame of size 7', where T/ > 2T — 1. The first ([TY/T] — 1)T steps of the
frame can be broken into T-frames, each with relative congestion R. The remainder of the
T'-frame consists of a single frame of sizc between T and 2T — 1 steps in which the relative

congestion is also at most R. a

Lemma 8 There is some way of choosing the packet delays so that in between the first and last
I? steps of a block, the relative congestion in any frame of size I) = log® I or greater is at most

r =r(l+ &), where & = O(1)/VIogT.

Proof: With cach edge we associate a bad event. For edge ¢, a bad event occurs when more
than r;T packets use ¢ in any T-frame for T in the range I} to 2I; — 1. To show that no bad
event occurs, we need to bound both the dependence of the bad events and the probability that
an individual bad event occurs.

We first bound the dependence. At most r(21° 4212 ~ I) packets use an edge in the block®.
Each of these packets travels through at most 2134212 — I other edges in the block. As we shall
see later, it will always be true that r = r{9) = O(1). Thus a bad event depends on b = O(J®)
other bad events.

Now let us compute an upper bound on the probability, p;, that more than ryI; packets
use an edge in a particular J)-frame. Since a packet may be delayed up to I steps before the
frame, any packet that uses e in the frame or in any of the J steps before the frame in S; may
use ¢ after the delays are inserted into S;. Thus, there are at most r(I 4 I;) packets that can
use ¢ in the frame. For each of these the probability that the packet uses ¢ in the frame after
being delayed is at most ([;/I). If we assume that no packet uses an edge more than once, then
these probabilities are independent. Thus, the probability p; that more than riJ; packets use
the frame is at most

r(I+h)

m< E ((I+ Il))(f /I)k(l I /I)rll-l-h) -k

k=r1 1)

3Throughout the followmg lemmas we make references to quantities such as =1 packets or log® I time steps,
when in fact r] and log! I may not be integral. Rounding these quantitiss to integer values when necessary does ~
not affect the correctness of the proof. For ease of exposition, we shall henceforth cease to consider the issue.

34 CHAPTER 1. PACKET ROUTING ALGORITHMS

Let ry = r(1+£1). We bound the series as follows. There are at most r{/ + I) terms, and the
largest of these occurs for k = rify. Applying the inequalities (1+z) < s In(l4x) 22 -21/2
for 0 <z < 1,and (§) < (ae/b)® for 0 < b < a to this term, we have

n < r([+I‘)c-rlu}(l/l-nIﬂ-h/(}l-?h/ﬂl).

For I, = log? I and &y = k;/VIog T, we can ensure that p < 1/I%, for any constant kz > 0 by
making consiant ky large enough.

Next we need to bound the probability p; that more than r, Iy packets use ¢ in any Ji-frame
of the block. There are at most O(J?) I)-frames. Thus p; < O(I3)pi. By making the constant
ks large enough, we can ensure that p; < 1/1%, for any constant k3 > 0.

The calculations for frames of size Iy + 1 through 2I; — 1 are similar. There are at most
O(I®) frames of any one size, and 2/ frame sizes between J; and 2/; = 1. By adjusting the
constants as before, we can guarantee that the probability p that more than rT packets use ¢
in any T-frame for T' between [y and 2I; — 1 is at most 1/I* for any constant k¢ > 0.

Finally, since a bad event depends on only b = O(I®) other bad events, we can makedpb <1
by making k4 large enough. By the Lovasz local lemma, there is some way of choosing the packet

delays so that no bad event occurs. O

Although the frame size in the center of each block has decreased, it has increased from
I to I? in the first and last J? steps of the block. Bzfore decreasing the frame size in these
regions, we move the block boundaries to the centers of the blocks, as shown in Figure 1-8. Now
cach block of size 213 + 212 has a “fuzzy” region of size 2% in its center in which the relative
congestion ir, any frame of size J? or greater is r(1 + 1/I). In the I® steps before and after
the fuzzy region, the relative congestion in any fraxe of size Iy or greater is ri. To reduce the
frame size in the fuzzy region, we assign a random delay from 1 to I? to each packet. A packet
with delay z waits once every I3/z steps in the I® steps before the fuzzy region and once every
I3/(I% - z) steps in the I3 steps after the regicn. The rescheduled block now has size 23 4312,

We now show that there is some way of inserting delays into the schedule before the fuzzy
region that both reduces the frame size in the fuzzy region, and does not increase either the
frame size or the relative congestion before the fuzzy region by much. A similar analysis holds

after the fuzzy region.

1.2. THE EXISTENCE OF ASYMPTOTICALLY OPTIMAL SCHEDULES 35

1 pooimeser pog gpn
v v v

packet r r(1+1/0

T “F

Figure 1-8: A block after recentering. The “fuzzy region” in the center of the block is shaded.

Lemma 7 There is some way of choosing the packet delays so that between steps Ilog® I and
steps I3, the relative congestion in any frame of size Iy or greater is at most rg = r(1 + £2),
where 2 = 0(1)/VIogT, and so that in the fuzzy region the relative congestion in any frame of
size I) or grealer is at most ry = r(1 + £3), where £3 = 0(1)/VIogT.

Proof: Since no delays are inserted into the fuzzy region, the proof that the frame size has
been reduced in the fuzzy region is analogous to the proof of the previous lemma.

Before the fuzzy region, the situation is more complex. By the kth step, 0 < k < I3, a
packet with delay z has waited zk /I3 times. Thus, the delay of a packet at the kth step varies
essentially uniformly from 0 to u = k/I. For u > log® I, or equivalently, k > I'log® I, we can
show that the relative congestion in any frame of size I; or greater has not increased inuch.

The proof uses the Lovasz local lemma as before. The calculation for the dependence is
unchanged. The probability p2 that more than rafy packets use an edge ¢ in a particular
I -frame is given by

ri{h+u)

p < E (rl(lls'*‘ u)) (Il /u)'(l -1 /u)r;(lg-{-u)-l'

sxryly

Using the same inequalities as before, we have

m< 0(7'1 (Il + u)e-—nIxcg(l/2—q/2-lg,lc§u-2h/uu)).

For I) =log? I, u > log® I, it suffices that &2 = O(1)/vTog 1. a

For steps 0 to I'log®I, we use the following lemma to bound the frame size and relative

congestion.

36 CHAPTER 1. PACKET ROUTING ALGORITHMS
1 Iog T ume sicp r+f 29438
v v ¥ v v
packet | r, " Ty 2l |
s <> < L o <P
I, 1 } 1o

Figure 1-9: Final bounds on {rame size and relative congestion. To reduce the {rame size in the
fuzzy regions, delays are inserted only outside the shaded region. Here [=log?/, I =log'/,

r1=r(1+0(1)/ViogT), r3 = r(14+0(1)/ViogT), aud ry = ry (1+1/ log I) = r(1+0(1)/ vIogT).

Lemma 8 The relative congestion in any frame of size Iy or greater between steps 0 and Hog® 1
is at most ry, where Is =log* I and ry = ry(1 4 1/ logI).

Proof: The proof is similar to that of Lemma 4.) @)

We have now completed our transformation of schedule S; into schedule S;4;. Let us review
the relative congestion and frame sizes in the different parts of a block. Between steps 0 and
Ilog® I, the relative congestion in any frame of size J3 or greater is at most ry. Between this
region and the fuzzy region, the relative congestion in any frame of size J; or greater is at most
2. In the fuzzy region, the relative congestion in any frame of size /) or greater is at most ry.
After the fuzzy region, the relative congestion in any frame of size [} or greater is again ry,
until step 213 4312 — I'log® I, where the relative congestion in any frame of size I or greater is
r4. These bounds are shown in Figure 1.9. For the entire block it is safe to say that the relative
congestion in any frame of size 7(+1) = log* I or greater is at most r(+1) = r(14 O(1)/VIogT).
0

1.3 On-line algorithms

1.3.1 An O(c+dlogN) on-line algorithm:

By applying the type of probabilistic analysis used in Section * °, it is fairly straightforward
to schedule any set of N packets in O(c + dlog N) steps with queues of size O(log N). We

[Y

1.3. ON.LINE ALGORITHMS 37

simply delay the start of each packet by a random amount that is chosen uniformly from
(1, wa]. and then route all the packets forward in a synchronized fashion. More precisely, we
introduce the initial delays and then consider the unconstrained schedule without regard for
the rule that at most one packet traverse any edge in a single step. With high probability, no
more than O(log N') packets will want to traverse any edge at any step of the unconstrained
schedule. Hence we can simulate each step of the unconstrained schedule with O(log N') steps
of a legitimate schedule. The final schedule consumes O((d + glg)log N) = O(c + dlog N)
steps to complete the routing and uses queues of size O(log N').

1.3.2 An O(c+d+log N) on-line algorithm for layered networks

In this section we show how to route N packets whose paths have congestion ¢ on a bounded-
degree layered network with levels 0 through d in O(c + d + log N') steps with high probability
using constant-size queues. A packet can originate at any node in the network, but its desti-
nation must be on a level with a larger number. No bound is placed on the size of the initial
and final queucs, The edge queues, however, can cach hold at most ¢ packets. The value of ¢
can be any constant integer (including 1), and will affect the overall routing time by a constant
factor. Each node has has in-degree and out.degree at most A, where A is a fixed constant.

The scheduling algorithm is identical to Ranade's algorithm except thit instead of ordering
the packets based on destination address, we order them according to random ranks. In par-
ticular, each packet is assigned a random rank chosen randomly, independently, and uniformly
from the range (1, w), where w will be specified later. A packet is routed through a node only
after all the othar packets with lower ranks that must pass through the node have done so. Ties
in rank are broken according to destination address.

The routing protocol guarantees that the packets in each queue are arranged from head
to tail in order of increasing rank. Before routing begins, the packets in cach initial queue
are sorted according to rank. At the tail of cach initial queue there is a special end-of-stream
(EOS) packet with the largest possible rank. All queues operate in a first-in first-out (FIFQ)
manner. At each step, a node examines the heads of its initial and input edge queues. If any of
these queues are empty, then the node does nothing. Otherwise, it selects the packet with the

smallest rank as a candidate to be transmitted. The candidate is sent forward only if the edge

38 CHAPTER 1. PACKET ROUTING ALGORITHMS

queuc that it must enter contains fewer than g packets at the beginning of the step. Thus, an

cdge queuc is guaranteed never to hold more than ¢ packets,

To prevent queues from becoming empty, whenever a node transmits a packet along one
output edge, it sends a ghost packet with the same rank along all of its other output edges.
‘The rank of the ghost packet provides the node on the next level with a Jower bound on the
ranks of the packets that it will receive in the future. Ghost packets allow a node to transmit
a packet without having to wait for actual packets (if any) of higher rank to arrive on all of its
input edges. Thus, a node starts transmitting packets as soon as it has received some kind of
packet on each of its input eddges, and at each step thereafter, it transmits a packet on all of its
output edges until it sends an EOS packet. For simplicity we will assume that the queue size is
at least two, so that once a quene contains a packet, it does not become empty until the node
transmits an EOS packet. With minor modifications, the analysis can be made to work with

queues of size one.

A ghost never remains at a node for more thai one step and never resides in a queue t<cept
at the head. At the end of each step, a node first destroys any ghosts that were present in its
cdge queues at the beginning of the step, then destroys any ghosts not at the head of a queue.

To prove that the algorithm completes the routing in O(c + d + log N) steps, we use the
same delay path argument as Ranade [81] (which, in turn is quite similar to the ones used by
Alcliunas (3] and Upfal [94)), but we si~plify the counting part of the analysis. The simplified
counting has the additional nice feature that it allows the edge queue size to be as small as one,

which was not possible with Ranade's original analysis.

A dclay sequence has four components. The first is 3 path of length I that begins on level d
at the destinatior: of some packet. The path may traverse edges in either the forward direction
(i.c., from a level i to a level i + 1) or in the backward direction. If f is the number of forward
edges traversed on the path, then [< d+2f. The second component is a sequence sy,...,8, of
not necessarily distinct nodes on the path. The third component is a sequence py,...,py of w
distinct packets such that the path for packet p; passes through node s;. The final component

is a sequence ry,...,ry, of ranks such that r; < riyy.

Each delay sequence corresponds to a bad event in a ility space. The only use of

randomness in the algorithm is in the choice u{ ranks for sets. Thus, the probability

1.3. ON-LINE ALGORITHMS 39

space consists of w¥ equally likely elementary outcomes, one for each possible setting of the
ranks. A delay sequence corresponds to the event that the rank chosen for packet p; is r;, for
1 € i € w. Each bad event consists of w™=* clementary outcomes and occurs with probability
1/w™.

The following lemma is the crux of Ranade's argument.

Lemma 9 (Ranade) For any w, if some packet is not delivered by step d+ w then a bad event

corresponding lo a delay sequence with ¢f < w occurs.
Corollary 10 If no bad cvent occurs, then all of the packels are delivered within d 4 w steps.
The theorem below presents our simplified counting argument.

Theorem 11 For any ky, there is a ky such that the probability tha! any packet is not delivered
by step d + w, where w = ky(d + ¢+ log N), is al most 1/N*,

Proof: To bound the probability that some packet is delayed w steps, we need only bound the
probability that some bad event occurs. This probability is at most

NEAY () (adv ()

w\l’

The numerator is an upper bound on the number of different delay sequences, each correspond-
ing 1o a bad event. There are at most N places that the path can start, at most (2A)! ways
that it can continue, at most ("£¥) ways of selecting Lhe nodes sy,...,8, on the path, at most
(Ac)¥ ways to pick the packets py,...,py that pass through 8;,...,,, and at most (’w‘") ways
to choose the ranks ry,...,ry. Since the ranks are chosen from [1,w), the probability that
a bad event occurs is 1/w*. Using the inequality [£ d 4 2f < d 4 2w/q, we sce that for
w = Q(d + ¢ + log V), this probability can be made arbitrarily small, even if ¢ = 2. a

For simplicity, we have heretofore ignored the possibility of combining multiple packets
with the same destination. In many routing applications, there is a simple rule that allows
two packets with the same destination to be combined to form a single packet, should they
meet at a node. For example, one of the packets may be discarded, or the data carried by the
two packets may be added to together. Combining is used in the emulation of concurrent-read

concurrent-write parallel random-access machines [81] and distributed random-access machines.

40 CHAPTER 1. PACKET ROUTING ALGORITHMS

If the congestion is to remain a lower bound when combining is allowed, then its definition
must be modified slightly. The congestion of an edge is the number of different destinations for
which at least one packet’s path uses the edge. Thus, several packets with the same destination
contribute at most one to the congestion of an edge.

If packets with the same destination are to be efficiently combined by the algorithm, then
they must be given the same rank. For this purpose, a random hash function is used to
generate ranky based on destination. Since ties in rank are broken according to destination, a
node won't send a packet in one of its input queues unless it is sure that no other packet for
the same destination will arrive later in the other quene. Thus, at most one packet for each
destination traverses an edge.

For the counting argument to work, the ranks assigned by the hash function to any set of

w packets must be independent. The universal hash function [17)

rank(z) = ((Wi‘ a.-:") mod I’) mod w -

i=0
maps a destination z € [0, P — 1] to a rank in [0, w ~ 1] with w-way independence. Here P is
a prime number and the coeflicients a; € Zp are chosen at random. The random coefficients
use O(wlog P) random bits. In fact, it suffices to choose ranks in the range [0,log N ~ 1] such
that any set of log N are independent [63, 82). In most applications, the number of possible
differeat destinations is at most polynomial in N, so the hash function requires only O(log? N)

bits of randomness.

1.3.3 Applications

In Sections 1.4 through 1.9 we examine the many applications of the O(c + d + log N)-step
scheduling algorithm for layered networks. These applications include routing algorithms for
meshes, butterflies, multidimensional arrays and hypercubes, the shuffle-exchange graph, and
fat-trees. Section 1.4 presents the simplest application: routing N packets in O(V/N) steps on
a VN % /N mesh. Another simple application, described in Section 1.5, is an algorithm for
routing N packets in O(log N') steps on an N-node butterfly. The mesh and butterfly results
were previously known (82, 81], but are included for completeness. Next, Section 1.6 presents

an algorithm for routing kN packets on an N-node k-dimensional array with maximum side

14. ROUTING ON MESHES 41

length Af in O(kAS) steps.

It is not obvious that the scheduling algorithm can be applied to the shuffle-exchange graph
because it is not layered. Nevertheless, in Section 1.7 we show liow to route N-packets in
O(log N) steps on an N-node shuflle.exchange graph by identifying a layered structure in a
large portion of the graph. In Scction 1.8, we show how to adapt the scheduling algorithm
to route a set of messages with load factor A in O(A + log Af) steps on fat-tree [56) with root
capacity M. The fat-tree routing algorithmn leads to the construction of an N-node network
with arca O(N) that can simulate any other network of arex O(N) with slowdown O(log N).
Finally, in Section 1.9 the scheduling algorithin is used as a subroutine in an O(log N)-step

sorting algorithm for the butterfly.

1.4 Routing on meshes

A 5% 5 mesh is illustrated in Figure 1-10. Each node has a distinct label (z,y), where z is its
column and y is its rew. In an n % n mesh, 0 € z,y € n 1. Thus, an n X n mesh has N = n?
nodes. For z < n =1, node (z,y) is connected io (z + 1,y), and for y < n — 1, node (z,¥)
is connected to (z,y + 1). Sometimes wraparound edges are included, so that a node labeled

(zyn —1) is connected to (z,0) and a node labeled (n - 1,y) is connected to (0,y).

It is straightforward to apply the algorithm described in Section 1.3 to route N packets on
a VN x VN mesh in O(VN) steps. The algorithm consists of four phases. In the first phase
only those packets that need to ronte up and to the right are sent. The paths of the packets
are eelected greedily with each packet first traveling to the correct row, and then to the correct
column. The level of a packet is the sum of its row and column numbers. This simple strategy
guarantees that both the congestion and dilation of the phase are O(v/N). The up-right phase
is followed by up-left, down-right, and down-left phases. This algorithm was first discovered

by Ranade [82). Although O(VIV)-step routing algorithms for the mesh were known before

[41, 43, 97], they all have more complicated path selection strategies.

42 CHAPTER 1. PACKET ROUTING ALGORITHMS

4§ O—O j‘: O
3 O0—0 I O—(
row 2 O—O I -O—0
1 O0——0 I O—0
0 O—O0—0—0—0
0 1 2 3 4
column
Figure 1-13: A 5 X 5 mesh. .

1.5 Routing on butterflies

An 8-input butlerfly network is illustrated in Figure 1-11, Each node has a distinct label {I,r),
where ! is its level, and r is its row. In an n-input butterfly, the level is an integer between
0 and lgn, and the row is a lgn-bit binary number. The nodes on level 0 and Ign are called
the inputs and outputs, respectively. Thus, an n-input butterfly has N = n(lgn + 1) nodes.
For | < lgn, a node labeled (l,7) is connected to nodes (I + 1,7) and (I + 1,r()), where r()
denotes r with the Ith bit complemented. Sometimes the input and output nodes in each row
are identified as the same nede. In this case the number of nodes is N = nlgn. The butterfly
has several natural recursive decompositions. For example, removing the nodes on level 0 (or

lgn) and their incident edges leaves two n/2-input subbuttterflies.

An important related network called the Benes network (10] is shown in Figure 1-12. An
n-input Benes network has 2logn 4 1 levels and contains 2 n-input butterflies as edge-disjoint
subgraphs. The two butterflies share nodes only on level logn. The first butterfly has its inputs
on level 0 of the Benes network, and its outputs on level logn. The second is the mirror image

of the first. It has its inputs on level 2logn + 1, and its outputs on level logn. An n-input

-

1.5. ROUTING ON BUTTERFLIES 13

000
001
010
011
100
101
110
111

row

Figure 1-11: An 8-input butterfly network. Each node lias a level number between 0 and 3,
and a 3-bit row number. A node on level [in row r is connected to the nodes on Jevel [4 1 in
rows r and r{), where where r(") denotes r with the Ith bit complemented.

butterfly can emulate an n-input Benes network with constant slowdown. Waksman [98) proved
that the inputs and outputs of a Benes network can be connected in any permutation by a set

of node-disjoint paths.

Ranade [81) showed that the scheduling algorithm for layered networks can be applied to an
N-node butterfly to route A" packets in O(log N')-steps using constant size queues. Routing is
performed on a logical network consisting of 41g n + 1 levels. The first g n levels of the logical
network are linear arrays. The packets originate in these arrays, one to a node. Levels Ign
through 31gn form a Benes network. The last lgn levels are again linear arrays. Each packet
has its destination in one of these arrays. Packets with the same destination are combined.
The butterfly simulates each step of this network in a constant number of steps. Paths for the
packets are sclected using Valiant’s paradigm; each packet travels to a random intermediate
destination on level 2lg n before moving on to its final destination. This strategy ensures that

with high probability the congestion is O(log N'), so that the total time is O(log N).

44 CHAPTER 1. PACKET ROUTING ALGORITHMS

level

000
001
010
011
100
101
110
111

row

Figure 1-12: An 8-input Benes network consists of two back-to-back 8-input butterfly networks.
1.6 Routing on multidimensional arrays

In this section we describe a randomized algorithm for routing kN packets on an N-node k-
dimengional array in O(kAf) steps using constant-size queues, where A is the maximum of the
side lengths M),..., M. Special cases include the mesh (k = 2) and the hypercube (M = 2).
For arrays of dimension greater than two, no asymptotically-optimal constant-queue-size routing

algorithms were previously known.

A k-dimensional array with side lengths M; > 2, for 1 <i < k, has N = M; ..« M) nodes
and kN edges. Each node has a distinct label (wy,...,wi), where 0 < w; < M; — 1, for
1 <1 < k. A node has one outgoing and one incoming edge for cach dimension; for 1 < i <k,
(wy,...,wx) has an cdge to (wy,...,w; + 1 mod M;,...,wx). We assume that at cach step,
a node may simultancously transmit a packet on each of its k outgoing edges, and receive a

packet on each of its k incoming edges.

In order to apply the scheduling algorithm from Section 1.3, routing is pe:formed on a
bounded-degree layered logical network that the array emulates. The logical network consists of
(2k+1) plateauslabeled 0 through 2k, cach consisting of N logical nodes. Each node in 4 plateau

has a label (wy,...,w;) distinct from the labels of the other nodes in the plateau. We begin by

1.6. ROUTING ON MULTIDIMENSIONAL ARRAYS 45

describing the edges in plateaus 0 through k. A node on plateau i has edges only in dimensions
tand i1, Ifi> 0and w; < M;—1, then the node labeled (wy,...,wi) has an edge to the node
in the same plateau with label (wy, ... w4 1,.00,wi). Also, if § < k and wiyy < Mgy = 1,
then the node has an edge to (wy,...,wip1 +1,...,wx). The only connections to plateau i +1
come from nodes with w4y = M =1, Fori < k, (wi,...,w;, Mij1 — 1, wis2,...,ws) On plateau
i is connected to (wy, ..., w;i, 0,Wig2,..., wi) on plateau i+ 1. Plateau k is connected to plateau
k 4+ 1 by dimension) edges. Plateaus k + 1 through 2k are essentially a copy of plateaus 1
through k. The edges on plateau k+ i, 1 € i £ k are given by the same rules as the edge on on
plateau i. The level of node (w;,...,wx) in plateau i, 0 < i <k, is 2}., w; + Ej-_‘ M;. For
k < i € 2k, the level is Tha; wj + Tik My + TX., Mj. The network is layered because .ach
cdge connects a pair of nodes on adjacent levels.

Each step of the logical network can be emulaied by the array in a constant number of steps.
The array node labeled (w,...,wx) emulates all of the logical nodes with the same label, one
for each of the 2k + 1 plateaus. The array edge from (wy,..., Wi ... wh) o (Wyy...,w; +
1 mod A;,...,wx) emulates at most four logical edges, one each on plateaus i~ 1, i, k+i~1
and k +1.

Paths for the packets are selected using Valiant’s paradigm. Initially each node on plateau
0 holds k packets in an initial queue. A packet travels from its origin on plateau 0 to a random
destination on plateau k, then continues on to its true destination on plateau 2k. Suppose
that a packet originating at (zi,...,x) on plateau 0 is to pass through (ry,...,rs) on plateau
k on its way to (y1,...,y) on plateau 2k. In the first half of the path plateau i is used
to make the ith component of the packet’s location match the ith component of its random
destination. The packet enters plateau i > 1 at node (ry,...,7i-1,0,Zi41,...,Zx) and traverses
dimension i edges to (*1,...,7i, Zi41y ..+ ,Zk). The packet then traverses dimension i 4 1 edges
to (r1y... iy Migy = 1,2i42,...,2k) and crosses over to node (ry,...,ri,0,2i42,...,Zk) ON
plateau ¢ 4 1. In the second half of the path, plateau k + i is used to make the ith component
of the packet’s location match the ith component of the true destination in a similar fashion.

The following lemma shows that with high probability, the congestion of the paths is at most
O(kAM).

Lemma 12 For any ky, there is a ky such that the probability that ¢ > kokM is at most 1/N*%,

46 CHAPTER 1. PACKET ROUTING ALGORITHMS

Proof: For simplicity we analyze congestion in the first half of the network only. The calculation
for the second half is identical.

We begin by bounding the probability that a particular edge is congested. There are two
parts to the calculation: counting the number of packets that can possibly use the edge, and
bounding the probability that an individual packet actually does so. First, we count packets
that can use the edge. Consider an edge on plateau i from (wy,...,wx) to (wy,... 05 +
1 mod M;,...,wi). Since a packet does not use any dimension i + 1 through k edges before
it uses a dimension i edge, any packet that uses the edge must come from an origin whose
last k — i components x4y through xix match w4y through wi. There are at most My .-+ M;
such origins, each transmitting k packets. Next we bound the probability that each of these
packets actually uses the edge. A packet uses the edge only if components ry through ri-y of
its random destination match w; through w;_,. The probability that these components match
is 1/My - Moy,

Since the random destinations are chosen independently, the numnbér of packets, S, that pass
through the edge kas a binomial distribution. The probability that more than kakM packets

usc an edge is at most

kMy - AL (1)hku
o | < =7 *
Pr(S > kakM] £ (Kok A) My My

Using the inequalities M; < M for 1 < i < k,and (}) < (2‘5)‘, we have Pr[§ > kzkM] <

(ﬁ)h“l.

To bound the probability that any edge is congested, we simply sum the i;robabilitiu that

cach particular edge is congested, i.e.,

e kakM
Prlc > kokAf]) < 4EN (-L—-) .
2
For any k, there is a ks such that this probability is at most 1/N%, a

Theorem 13 For any ky, there is a ko such that the probability that any packet is rivi delivered
by step kokM is at most 1/N*,

Proof: With high probability, the scheduling algorithm from Section 1.3 delivers all packets in
O(c+d+log N) steps. The number of levels is O(kA), and by Lemma 12 with high probability
the congestion is O(kM). Also, log N < kM. a

1.7. ROUTING ON SHUFFLE-EXCHANGE GRAPHS 47

G-a(| |-

Figure 1-13: An 8-node shuffle-exchange graph. Shuffie edges are solid, exchange edges dashed.
1.7 Routing on shuffie-exchange graphs

In this section, we present a randomized algorithm for routing any .permutation of N packets on
an N-node shuffle-exchange graph in O(log N) steps using constant-size queues. The previous
O(log N)-time algorithms (3] required queues of size Q(lcg V).

Figure 1-13 shows an 8-node shuffle-exchange graph. Each node is labeled with a unique
lg N-bit binary string. A node labeled a = ajgn_) <+ ap is linked to a node labeled b =
bign-1++-b9 by a shuffle edge if rotating a one position to the left or right yields b, i.e., if
cither b = agajgn-181gN-2° @) OF b = G1gN-2a1gN-3 "+ ap81gN~-1. TWo nodes labeled a and
b are linked by an exchange edge if a and b differ in only the least significant (rightmost) bit,
ie, b= agn_1- @ In the figure, the shuffle edges are solid, and the exchange edges are
dashed.

The removal of the exchange edges partitions the graph into a set of connected components
called necklaces. Each necklace is a ring of nodes connected by shuffle edges. If two nodes lie
or the same necklace, then their labels are rotations of each other. Due to cyclic symmetry,
the number of nodes in the necklaces differ. For example, in a 64-node shuffle-exchange graph,
the nodes 010101 and 101010 form 2 2 node necklace, while 011011, 110110, and 101101 form
a 3-node necklace. For cach necklace, the node with the lexicographically minimum label is

chosen to be the necklace’s representative.

18 CHAPTER 1. PACKET ROUTING ALGORITHMS

1.7.1 Geod and bad nodcs

Unlike the mesh and buiterfly networks, the shuflle-excliange graph cannot emulate a layered
network in a transparent fashion. Nevertheless, it is still possible to apply the O(c+ d 4 log N)
scheduling algorithm for layered networks to the problem of routing on the shuffle-exchange
graph. The key idea is that a large subset of the shuffle.exchange graph (at least N/5 nodes)
can emulate a layered network. \We call these nodes good nodes. The rest of the nodes are bad.

A node can be classificd as bad for one of three reasons: (1) its label does not contain a
substring of lglg N consecutive 0's (we-zonsider the rightmost and leftmost b.ts in a label to
be consecutive), (2) its label contains at least two disjoist jongest substrings of at least Iglg ¥
consecutive 0's, or (3) its label is 0+.-0. Thus, the label of avery good node containg a unique
longest substring of 0°s with length at least Iglg N. For simplicity, we assume that lglg N is
integral, and that lgN > Iglg V.

Since the length of a substring of consecutive 0's in a Jabel is not changed by rotation, a
necklace consists either entirely of good nodes or entirely of bad nodes. Furthermore, each
good nicklace consists of Ig N good nodes since a unique longest substring of consecutive 0's
precludes cyclic symmetry.

In order to route packets between all N nodes of the shuffle-exchznge graph, we associate
the bad nodes with good nodes. A type-1 bad node is associated with a good node by changing
the least significant bit of its label to a 1 and the Iglg N most significant bits to 0's. Each bad
necklace of type 2 is associated with a good necklace by changing the two bits following the
leading group of 0's in its representative’s label to 01. Finally, the node 0...0 is associated
with its neighbor 0.-.01.

Lemma 14 At most 41g N bad nodes are ussociated with any good necklace.

Proof: Each type-1 bad node is associated with the representative of a good necklace since,
after the transformation, the longest string of consecutive 0's begins with the most significant
bit. Only bad nodes whose labels differ from the representative’s label in at most lglg N + 1
bits are associated with it, so at most 2'8!8N+1 = 2]g N type-1 bad nodes are associated with
any good necklace.

To assess the number of type-2 bad nodes associated with a good necklace, we consider

1.7. ROUTING ON SHUFFLE-EXCHANGE GRAPHS 49

the label of the representative of the good necklace and notice that only a had necklace whose
representative’s label differs in the last bit of its leading block of 0°s and possibly the bit after
that can be mapped to the good necklace, Thus, at most two type-2 bad necklaces are associated
with any good necklace.

Finally, no bad nodes of cither type 1 or 2 are associated with the necklace of node 0---01.

Q

Corollary 15 At least N/5 of the nodes are good.

Proof: By Lemma 14 at most £1g N bad nodes are associated with any good neckiace. Since

every good necklace contains exactly lg N nodes, at least N/5 of the nodes are good. 0

‘The remainder of this section provides the details of the routing algorithm. We begin by
describing a logical layered network that the good nodes can easily emulate with constant over-
head. Next, we show that, for any routing problem, choosing random intermediate destinations
yields paths with congestion and diation O(log N) in this network, with high probability. Thus,
by applying the analysis of Section 1.3, routing on the logical network takes O(log N) steps, with
high probability, and uses constant-sized queues, We conclude by describing the deterministic

routing between good and bad nodes.

1.7.2 A layered network

The level of a node is deternaned by the distance to the representative node in its necklace. An
alternate way to write a node's label is to place 2 line under its least significant bit (which we
call the current bit), and then rotate it until it matches its representative’s label. For example,
110001 can also be written 000111, The level of a node is the position of the current bit,
counting from the left. For example, 000111 lies on level 3. (Note that the representative node
lies on level Ig N - 1.)

The problem with this leveling scheme is that although it induces a leveling of the shift
edges, it does not necessarily induce a leveling of the exchange edges. An exchange cdge may
create a new longest substring of 0's by appending two substrings separated by a single 1, and

thus connect two levels which are very far apart.

50 CHAPTER 1. PACKET ROUTING ALGORITHMS

‘lo overcome this difficulty, we replace the exchange edges with flip edges. A flip edge links
nodes Jabeled a and b if both are good, = gy ey <o g; 0 a0, b= aygnoy + oWl e a9, and a,
is not in the longest block of 0's of a. Note that a flip edge extends a group of 0's by at most
one. Thus no flip edge can create a new leading group of 0's, because if it grew a shorter group
to be as big as the leading group, then it would lead to a bad node of type 2, a contradiction
since flip edges occur only between good nodes by definition. Thus flip edges are leveled. The
operation of the flip edges can be cmulated by the shufMe.exchange graph with only a constant
factor of slowdown; each flip edge is composed of an exchange edge, a shuflie edge, and possibly
another exchange edge.

We denote by A the network composed of the good nodes, the shuffle edges (excluding the
shuflle edges from level Jg N — 1 to 0), and the flip edges. Note that in network A, from any
level 0 node we can reach any necklace with a longest string of 0's having the same or greater
length by correcting bits starting from the end of the leading block of 0's.

In fact, we wizh to be able to get from the level 0 node of necklace to any other necklace.
‘Thus we append a mirror image A to itself so that we can reach necklaces with fewer 0's. The
leveling is extended in the natural manner. We call this whole thing network AAT, and note
that network A can easily emulate it,

We denote by L the network consisting of the shuffle edges on the good nodes again excluding
shuflle edges from level lg N — 1 to level 0. Our method of path selection consists of routing
from a good node to its level 0 node, then routing to a random intermediate necklace, then
routing to the destination necklace, and finally routing to the appropriate good node. Thus,
we route in a layered network composed of network L, network AAT, another network AA”,
followed by netwark L. We extend the leveling in the natural manner and note that network A

can casily emulate the whole thing.

1.7.3 Path selection and congestion

For cach packet we choose its path by uniformly choosing a random. good necklace to route
through before going to its final destination. So the path for a packet consists of a path
through L to node 0 of its necklace, the path through AAT to its random intermediate necklace,

the path through the second AAT to its destination necklace, and a path through the second L

e e e .

T — e

1.7. ROUTING ON SHUFILE-EXCHANGE GRAPHS 51

} to the proper node of the necklace.
The following lemma shows that if at most O(log N') packets originate and terminate in each

good necklace, then this method yiclds paths with congestion O{log N} with high probability.

Lemma 18 Suppose that cach good necklace sends and receives at most blg N packets, where
b iz a fized constant, Then for any constaat ky, there is a constant ky such that the probability

that more than ky)g N packets use any edge is at most 1/ N®,

Proof: We observe that for the paths in the copies of L, we have congestion blg ¥, since at
most blg ¥V packets start or end in any good necklace. By symmetry we claim that the analysis
of the path portions in both copies of AA™ is the same. Finally we recall that in AA7, we route
packets going to necklaces with same or more 0's to the appropriate necklace in network A
and straight across network A7, and we route the other packets straight across in network A
and use A" to route to the proper necklace. We will show that any destination necklace gets
O(logn) packets with high probability, so the straight across pottion of the paths should not
be a problem. To finish, we give the analysis of the congestion due to packets in just network
A, and claim that the arguments will kold by symmetry for AA".

Consider an edge in the first copy cinetwork A. In this half, packets going to necklaces with
fewer leading 0's are routed straight across A. There are at most blg N of these, so without
loss of generality we ignore them. Suppose that e traverses levels m and m 4 1. Let z be
the number of 0's in the necklace to which e goes. If m < z, then no packet frem any other
necklace uses e, since we only map to a necklace via flip edges after its longest string of 0's.
Otherwise, we consider the number of packets from other necklaces that can use e. We know
that only packets from at most 2! other necklaces with [= m — lglg N could have used ¢ since
at most [bits could have chunged by level mn 4 1. Thus the number of packets that can use
¢ is at most b+ 2'lg N since each necklace starts with at inost blg N packets. The probability
that a specific packet uses e, is the number of necklaces that can be reached using e, at most
e N=leleN-1 (j ¢, necklaces which match e's necklace in the first [4 Iglg N bits), divided by
the total number of good necklaces, at least N/51g N, which is just 5/2!.

The prchability that more than k2 lg N packets use e is at most

b-2QgN (i)h!sl\'
klgN 2 ’

52 CHAPTER 1. PACKET ROUTING ALGORITHMS

since there ave b-2f1g N Bernoulli trials, cach succeeding with probability 5/2'. The probability
that any of the O(N') edges of this stage has congestion more than kalg N is O(N) times this
probablity, For any ky, we can hound the product by 1/N% by choosing kz large enough. O

Because the congestion and number of levels are O(log N'), with high probability, the time
to route the packets between the good nodes is also O(log N'), with high probability, and the

queue size is constant,

1.7.4 Packets from bad nodes

In this section we show how to deterministically route the packets from the bad nodes to their

associated good necklaces.

Lemma 17 Packels from bad nodes are routed to the associaled good necklaces deterministically

in O{log N) time using constant-size queues.

Proof: Recall that we associate a bad node of type 1 with the necklace represented by a 1 in
the lnast significant or current bit plus Iglg N 0's in the most significant bits, We route these
packets in the shuflle exchange graph by flipping the current bit to a 1 and flipping Iglg N bits
to the right to 0's. Thus we map a bad node to a good necklace at its level Iglg N node.

For any necklace, we have a binary tree, the leaves of which are mapped to the necklace.
Each level of the tree corresponds to one of the lglg N + 1 bits that were flipped. Tlerefore,
we can route packets from the binary tree leaves to the necklace, and distribute them along
the necklace deterministically. This is easily done in O(log N') time with zonstant queues. The
rouiing from the necklace to the tree is equally trivial. But, we need to ensure that traffic from
the scparate binary trees does not interfere too much. This is easy since any bad node is in
at most two binary trees; in at most one as a leaf since any node is mapped to exacily one
good node, and in at most one as an internal node since the number of 0's between the current
node and the closest 1 to the left determines a unique level and the rest of the bits determine
a unique tree.

To finish, we consider bad nodes of type 2. These are nodes without a unique longest string
of 0s. Here we extend one of the groups of 0’s by one 0, making sure not to join two groups of

0's by inserting a 1, mimicking the flip operation. For any good necklace whose representative

1.8. CONSTRUCTION OF AREA AND VOLUME-UNIVERSAL NETWORKS 53

is 0¥1... only the necklaces represented by 0%=110... and 0*=111... can be mapped to it. Again,
at most two bad necklaces arc associated with any good . acklace.

For each packet in such a bad necklace we route it through the node connecting it to the
appropriate good necklace. We perform this imovement by pipelining the packets through the
edge which connects the two necklaces, \We see that this mapping maps at niost one packet
from the bad necklace to a node in the good necklace. Since we are basically routing on linear
arrays of length at most 2]g N, 2lg N steps suffice to route the packets appropriately. Thus,
4lg N steps are suflicient to route the packets from two bad necklaces.

This finishes the description of the maps to and from all the bad nodes except for node

0.-.0, which is adjazent to node 0...01. 0

1.7.5 Summary

The main result of this section is summarized in the following theorem.

Theorem 18 With high probabilily, an N-node shu{Jlc-exchange graph can route any permu-

tation of N packets in O(log N') steps using constant-size queuces.

Proof: There are three phases to the algorithm, First, packets originating at bad nodes are
deterministically routed to the good nodes with which they are associated. By Lemma 17 this
phase requires O(log N) steps. Next, packets are routed between the good nodes on the logical
network. Since at most {lg N bad nodes are associated with each good necklace, with high
probability the congestion of the paths on the logical retwork is O(log N), Lemma 16. Thus,
this phase requires O(log i) steps, with high probability. The packets are routed in O(log N)
steps using the scheduling algorithm from Section 1.3. Finally, packets destined for bad nodes
are deterministically routed from the good nodes to bad. By an analysis similar to that of

Lemma 17, this phase also requires O(log N) steps. 8]

1.8 Construction of area and volume-universal networks

In this section we construct a class of point-to-point networks that are area-universal in the sense

that a network in the class with N processors has area O(N) and can, with high probability,

54 CHAPTER 1. PACKET ROUTING ALGORITHMS

simulate in O(log \') steps cach message-step of any shared-bus network of area O(N). The
simulation is optimal because a point-to-point network may require fi(log N) steps to simulate
one step of a shared-bus network. The networks are based on the fat-irees of Greenberg and

Leisarson {29] and the simulation uses the message routing algorithm from Section 3.

In a fixed-connection network, processors communicate via wires. Each processor has a
bounded number of read and write pins. In a point-to-point fixed-connection network, each
wire connects one read pin with one write pin. In each message-step, the processor with the
write pin may transmit a message of O(log N) bits to the processor with the read pin. Ina
shared-bus fixed.connection network, a wire may connect many read and write pins. Such a
wirc is called a bus. In each message-step, any processors wishing to send messages make them
available on their write pins. Then the messages at the write pins of each wire are combined by
some simple rule to form a single message Combining is assumed to require a single message-

step, regardless of the number of messages combined or the rule used,

Leiserson was the first to display a class of fixed-connection networks that could cfficiently
simulate any other network of the same arca or volume. In [56) he showed that a fat-tree of xrea
O(N) can simulate in O{log® N) bit-steps cach bit-step of any point-to-point fixed-connection
network of area O(N). The simulation used an off-line routing algorithm for fat-trees. On-line
routing algorithins were later developed by Greenberg and Leiserson [29] and Park {73]. None
of these routing algorithms are capable of combining messages to the same destination. As a
consequence, no scheme for simulating shared-bus networks was known until now. A network
that can simulate in O(1) steps cach step of any shared-bus network arca of equal arca was
presented in [69). However, the connections in this network are not fixed, but instead processors

cominunicate via reconfigurable busses.

A fat-tree network is shown in Figure 1-14. Its underlying structure is a complete 4.ary
trec. Each edge in the 4-ary tree corresponds to a pair of oppositely directed groups of wires
called channels. The channel directed from the leaves to the root is called an up channel; the
other is called a down channel. The capacily of a channel ¢, cap(c), is the number of wires in
the channel. We call the tree “fat” because the capacities of the chaunels grow by a factor of 2

at every level. A fat-tree of height m .. :s Af2 = 22™ leaves and M = 2™ vertices at the root.

It will prove useful to label the switches at the top and bottom of each channel. Let the

1.8, CONSTRUCTION OF AREA AND VOLUME-UNIVERSAL NETWORKS 55

Figure 1-14: A fat-tree.

level of A switch be its distance from the leaves. Suppose a channel ¢ connects cap(c)/2 = 2!
switches at level [with cap(c) = 2!+ switches at level [4 1. Give the switches at level ! labels
0 through 2' — 1 and the switches at level 14 1 labels 0 through 2'+! — 1. Then switch k at level
[is connected to switches & and k + 2! at level { 4 1. The following iemma relates the labels of

the switches on a message's path from a leaf to the root.

Lemma 19 There is a unique shortest path from any leaf to a suitch labeled k at the root, for
0 < k < M -1, and that path passes through a switch labeled k mod 2' at levell, for0 < 1 < m.
(@]

For a set Q of messages to be delivered between the leaves of the fat-tree, we define the load
of @ on a channel ¢, load(Q,¢), to be the number of destinations of messages in Q for which
, at least one message must pass through ¢. Note that even if many messages with the same
destination must pass through a channel, that destination contributes at most one to the load
of the channel. We define the load factor of Q on ¢, A(Q,¢), to be the ratio of the load of @ on
¢ to the capacity of ¢, A(Q, ¢) = load(G, c)/cap(c). The load factor on the entire network, A(Q)
is simply the maximum load factor on any channel A(Q) = max, A(Q,c). The load factor is a
lower bound on the the number of steps required to deliver Q. We shall assume that A < M k,
where k is some fixed constant. We shall sometimes write A to denote A(Q) when the set of
messages to be delivered is clear from the context.

In a layered fal-tree a switch at the top of an up channel at level [is connected to itself
at the top of the corresponding down channel by a linear chain of switches of length 2(m —1).

A message may only make a transition from an up chaunel to a down channel by traversing a

chain. Thus all shortest paths between leaves in a layered fat-tree have length 2m. Note that

56 CHAPTER 1. PACKET ROUTING ALGORITHMS

thn load of a sct of messages on a channel of the layered fat-tree is identical to the load on the
corresponding channel i the fat-tree.
The path that a message for destination x in column 2m takes through a layered fat.tree ix

determined by the m-universal hash fusction (17

M)
path(z) = ((z a.-x‘) mod I’) mod M,

i=0

where P is a prime number Jarger than the number of possible different destinations, and the
a; € Zp are chosen at random offling. A message with destination z follows up channels until
it can reach z without using any more up channels. It then crosses over to a down channel via
a chiain, and follows down channecls to x. Note that a message only passes through a channel
il it must. Also, all messages with destination z that pass through cliannel ¢ pass through
switch (path(x) mod cap(c)) at the top of ¢ and through switch (path(z) mod (cap(c)/2); at
the bottom of ¢. .

The following lemma shows that we can use the scheduling algorithm from Section 3 to

route messxges in a fat-tree.

Lemma 20 Forany constant ¢y, there is a conslant c3 such that the probability that the number
of steps required to deliver a set Q of N messaqes with load factor A is more than ca(A+log M)

is al most 1/M, provided that N is pelynomial in M.

Proof: The naths of the messages are first randomized using the universal hash function path.
With high probability, the resulting congestion is ¢ = O(+ log M). Each message travels a
distance of d = 2m = 2log M. The messages are then scheduled using the algorithm from
Section 3. a

Let us now consider the VLSI area requirements [93) of fat-trees. A fat-tree with root
capacity A and ©(M?) processors has a layout with arca O(M?log? Af) that is obtained by
embedding the fat-trec in the tree of meshes{46). The nodes of the tree of meshes in this layout
are separated by a distance of lgAf in both the horizontal and vertical directions. Thus, the
O(log M) space for the chain associated with each processor in the layered fat-tree can be
allocated without increasing the asymptotic area of the layout. (In fact, it is possible to attach

a chain of size O(log? M) to cach fat-tree node without increasing the area by more than a

1.8. CONSTRUCTION OF AREA AND VOLUME-UNIVERSAL NETWORKS 57

congtant fuctor.) The leaves of the fat-tree are separated in the layout from each other by &
distance of Ig M ix cach direction. \We can improve the deasity of processors without increasing
the asymptotic arca of the layout by connecting a Ig M X 1g M mesh of processors to each leaf,
The resulting network has O(M?log? Al) processors and arca O(M?log? M). The N-processor
network in this class has root capacity O(vVN/log N), O(N/log? N) leaves, and area O(N).

The following theorem shows that this class of networks is area-universal,

Theorem 21 With high probabilily, an N-processor point-to-point fired-connection nelwerk
U of arca O(N) can simulate in O{log N) steps each step of any shared-bus fired-connection
network B of area Q(N).

Proof: The processors of the shared-bus network B are mapped to the processors of the area-
universal network U off-line using a recursive decomposition technique as in [56). In each step,
a wire of D is simulated by routing messages between the processors that it connects. At each
level of the recursion at most O(cap(c)- log N) wires connect the processors mapped below a
channel ¢ with the rest of the network. This property of the mapping ensures that the load
factor of each set of messages used in the simulation of B is at most O(log N). At the bottom
of the decomposition tree, a O(log N) x O(log N) region of the layout of B is mapped to each
leaf ot the fat-tree. The O(log N) x O(log N') mesh connected to the leaf in U simulates this

region of B using standard mesh routing algorithms. o

The study of fat-tree routing algorithms that perform combining was motivated in part
by an abstraction of the volume and area-universal networks called the distributed random-
access machi ~ {DRAM). A host of conservative algorithms for tree and graph problems for the
exclusive-read exclusive-write (EREW) DRAM are presented in [58). Recently we discovered
conservative concurrent-read concurrent-write (CRCW) algorithms that require fewer steps
for snme of these problems. Until now, however, no efficient fat-tree routing algorithms that
perform combining were known. The O(\ +log N) step routing algorithm presented here fills
the void.

Only sligiit modifications to the area-universal fat-tree are necessary to make it volume
universal{29]. The underlying structure of the volume-universal fat-tree is a complete 8-ary

tree. Instead of doubling at cach level, the channel capacities increase by a factor of 4. The

58 CHAPTER 1. PACKET ROUTING ALGORITHMS

tree has m levels, roat capacity M = 22", and M3/ = 29" leaves. The switches at the top of
a channel at level [are labeled 0 through 4/ ~ 1. Switch & at level £ is connected to switches k,
ke al k4248 and k434" at lovel I+ 1. A layout with volume O(M3/21og®/? M) for the
fat-tree can be obtained by embedding it in the three-dimensional tree of meshes. As hefore,
a chain of size O(log®/? M) can be attached to each node of the fat-tree without increasing
the asymptotic Jayout area and the density of processors can be improved by connecting a
1g'/2 M x 1gY/? M x 1g'/? M mesh to cach leaf.

1.9 Sorting on butterflies

In this section we present a randomized algorithm for sorting N 1g N packets on an N Ig N-node
butterfly network in O(log N) steps using constant-size queues. The algorithm is based on the
Flashsort algorithm of Reif and Valiant {84]. The main diffarence is that we use the algorithm
for scheduling packets on layered networks in place of their scheduling algorithm, which requires
queucs of size O(log N). A similar approach has been suggested previously by Pippenger {76),
and Reif (83).

1.9.1 The algorithm

The basic outline of the algorithm is the same as that of Flashsort. The first step is to randomly
sclect a small set of splitters from among the packets that are to be sorted. Next the splitters
are sorted deterministically. The splitters partition the packets into intervals. The ith interval
consists of those packets whose keys are larger than the key of the (i — 1)st largest splitter, and
smaller than the key of the ith largest splitter. (We assume without loss of generality that all
of the keys are distinct.) Using the splitters as guides, cach interval of packets is routed to a
different subbutterfly, where it is sorted recursively.

We begin by describing a recursive algorithm for sorting N/1g” N packets in O(log N) time
on an N lg N-node butterfly, where o is some fixed constant larger than one. The butterfly is
“lightly loaded™ by this factor of Ig®*! N to cnsure that, with high probability, at the lower
levels of the recursion the number of packets to be sorted by each subbutterfly does not exceed

the number of inputs to that subbutterfly. When the algorithm is invoked, each packet must

1.9. SORTING ON BUTTERFLIES 59

1. Count the number of packets entering the butterfly. Let the number of packets be denoted
by n.

2. Randomly and independently, make each packet a candidate with probability VAT /n.
3. Sort the candidates deterministically.

4. Select every Jg Nth candidate to be a splitter.

5. Distribute the splitters for splitter-directed routing,

6. Route each packet to a random row of the butterfly.

7. Route cach interval a subbutterfly via splitter-directed routing.

8. Distribute the packets in cach interval so distinct inputs of the corresponding subbutter-
flics.

9. Sort the intervals recursively.

Figure 1-15: The steps performed by an Af-input butterfly in the recursive algorithm for sorting
N/1g® N packets in O(log N) time on an N lg N-node butterfly using constant-size queues.

reside at a distinct input. As we shall see, this algorithm can be combined with Leighton’s
Columniort algorithm [47) to sort all Nlg N packets in O(log N) time.

The steps taken by a butterfly with Af inputs are presented in some detail in Figure 1-15.

The first step in the algorithm is to count the number of packets entering the butterfly.
Since the packets reside in distinct inputs, the total number of packets can be computed via
a parallel prefix computation. The prefix computation can be performed in O(log Af) time
deterministically.

Next each packet independently chooses to be a splitter candidate with probability v/ /n.
As we shall see, with high probability the number of candidates is between v/A7/2 and 3v/Af/2.
This step requires only constant time.

The candidates are then sorted in O(log M) time using a simple deterministic algorithm

based on counting 70, 84).

After the candidates are sorted, every (Jg N)th one in the sorted order is chosen to be a
splitter. This oversampling technique, due to Reif, ensures that each of the intervals contains

approximately the same number of splitters, with high probability. Note that we oversample

60 CHAPTER 1. PACKET ROUTING ALGORITHMS

by a factor of lg N, where N is the number of inputs in the entire network, independent of
the number of inputs, A, of the butterfly on which the algorithm is invoked. Since with
high probability there arc at least VAT/2]g N splitters, the subbutterflies at the next level of
recursion should have at most 2V/A7 lg N inputs.

Nexs the splitters are distributed throughout the butterfly so that they can direct each
interval of packets to the appropriate subbutterfly. We distribute a copy of the median splitter
to cach node in level 0 of the butterfly. Then we divide the splitters into upper and lower halves.
We distribute a copy of the median splitter from the upper half to each node in the upper half
of level 1. Similarly, we distribute a copy of the median splitter from the lower half to each
node in the lower half of level 1. The process continues in this fashion until all of the splitters
arc used up. At this point, every node in the first @(log(VAl/log N)) levels of the butterfly
has a copy of a splitter. This step can be performed deterministically in O(log M) time.

After the splitters are positioned, each packet is routed to a random row of the butterfly.

The packets are scheduled using the algorithm for routing on layered networks.

Each interval of packets is then routed to a different subbutterfly. This step is called eplitter-
dirccied routing {84). The paths of the packets are determined as follows. At level 0, each packet
compares itsell to the median splitter. If it is larger, it moves to the upper half of the second
level, otherwise it moves to the lower half. The process is repeated at the level 1, with each
packet being directed to the appropriate quarter of level 2, and so on. The packets are scheduled
using the algorithm for routing on layered networks. When all the packets have been routed
along in the butterfly as deeply as the splitters are assigned, each subbutterfly at that levcl

picks new splitters and prozeads recursively.

The last step before the recursive call is to position the packets in each subbutterfly in
distinct inputs. The problem of distributing a set of packets to distinct destinations is known
as the token distribution problem [74). On an M-input butterfly where at most ¢ packets enter

each input, M packets can be distributed deterministically in O(c} log M) time.

The recursion continues until cither the number of inputs, M, is smaller than 2V or
the number of packets, n, is smaller than VM. In the first case, the sort is completed using
Batcher's odd-even merge sort. An M-input butterfly can sort M packets in O(log? M) time
using odd-even merge sort. For M = 2\/'5_“7, the time is O(log N). In the second case, the

1.9. SORTING ON BUTTERFLIES 61

packets can be sorted daterministically in O(log M) time by the same technique that is used in
step four to sort the candidates.

We can now make a rough estimate of the ronning time of this algorithm. Steps 1 and 2 are
performed dete'ministically in O(log M) time. Assuming that there are O(VM) candidates,
Steps 3, 4, and 5 also require O(log Af) time. As we shall see, the expected time for Steps 6, 7
and 8 is O(log M). Although these steps sometimes take longer than expected, let us assume

for now that they do not. In this case, the running time is given by the recurrence
TEVMIgN) +Ollog M) M > 2VI¥

O(log N) M < 2VieN

which has solution T'(N) = O(log N).

T(M) < {

1.9.2 Analysis

The analysis of the algorithm is broken into three parts, each corresponding to a different use
of randomization in the algorithm. We first examine the use of randomization in selecting the
splitters. We show that, with high probability, the number of splitters chosen by each butterfly
is within a constant factor of the expectation and the number of packets in each interval is
smaller than the number of inputs to the butterfly to which it is assigned. Next, we bound the
probability that the congestion is large at any particular switch in Steps 6 and 7. Finally, we
show that if the packets are scheduled using the randomized algorithm for layered networks,
then it is unlikely that a delay of more than O(log N) will accumulate over the course of the

algorithm,

1.9.3 Bounding the load

The first step in the waalysis is to show that, with high probability, the number of splitter
candidates chosen by each butterfly is within a constant factor of the expectation. We say that
an M-input butterfly is well-partitioned if the number of splitter candidates chosen is between
VA /2 and 3v/AM /2. The 3v/M/2 upper bound ensures that the candidates can be sorted
deterministically by the butterfly in O(log M) time and the v/Af/2 lower bound implies that
the subbutterflies at the next level of recursion will have at most 2V/AM g N inputs. If all of

the butterflies are well-partitioned, then the algorithm terminates after O(loglog N) levels of

62 CHAPTER 1. PACKET ROUTING ALGORITHMS

recursion, (The choice of 1/2 and 3/2 as the cosfficients of /AT are not particularly important.

Other constants would serve equally well.)

Lemma 22 For any fized constant &y there is a constant ky such that the probability that any
bulterfly with at least ka1g® N inputs is not well-partitioned is at most 1 /N5,

Proof: We begin by considering a single Af-input butterfly that is to sort n packets. Since
cach packet chooses independently to be a candidate, the number of candidates has a binomial
distribution. Let § be the number of successes in r independent Bernoulli trials where each
trial has probability p of success. Then we have Pr{S = s] = ([)p*(1 — p)™*. We estimate the
arca under the tails of this binomial distribution using a Chernofl-type bound [18). Following

Angluin and Valiant (4] we have

Pri§ S irp) & e (-mVref2

PrS 2 yarp) < -l

In our application r = n, p = VAl /n, 71 = 1/2, and 72 = 3/2. For any fixed constant ks, there
is a constant k3 such that the the right-hand sides of the two inequalities sum to at most 1/N*s
for M > kalg® N.

To bound the probability that any butterfly is not well-partitioned, we sum the probabilities
for all of the individual butterflies. Over the course of the algorithm, the algorithm is invoked
on at most Nlg N individual butterflies. Thus, the sum is at most lg N/N*s=1, For any ki,
there is a k3 such that this sum is at most 1/Nk, a

‘The next lemma shows that, with high probability, the number of packets in each interval
is at most a constant factor times its expectation. We say that an AM-input butterfly that is
assigned n packets to sort is a-split if every interval has size at most anlg N/vM. As we shall
see, if every butterfly is O(1)-split and there are O(loglog N) levels of recursion, then by lightly

loading the butterfly we can ensure that no butterfly is assigned too many packets to sort.

Lemma 23 For any fized conslant ky there is a constant ky such that the probabilily that every
butterfly is ko-split is at least 1 — 1/N*

Proof: We begin by examining a single packet in a single M-input butterfly that is to sort

n-packets. To show that a packet lies in an interval of size at most konlg N/v/M it is sufficient

1.9. SORTING ON BUTTERFLIES 63

to show that both following and preceding it in the sorted order at least Ig.V of the next
kanlg N/2V/M packets are candidates.

First we consider the packets that follow in the sorted order. The number of candidates
in a sequence of kanlg N/2VAT packets has a binomial distribution. For r = kynlg N/2VM,
p= V[, rp=kgN/2, and q; = 2/k;, we have Pr[S < Ig N) < ¢~*2(1-2/k) N4 For any
ky we can make the right-hand side smaller than 1/N% by choosing ks large enough.

The calculations for the packets that precede in the sorted order are identical. The prob-
ability that fewer Ilg N of the preceding kynig N/2VAT packets are candidates is at most
1/N%. Thus, the probability that an individual packet lies in an interval of size greater than
kanlg N/2vV/M is at most 2/ Nk,

To bound the probability that any interval in the butterfly is too large we sum the proba-
bilities that each individual packet lies in an interval that is too large. Since there are at most
N lg N packets, this sum is at most 21g N/Nks-1, ‘

To bound the probability that any butterfly is not ky-split, we sum the probabilities that
each individual butterfly is not. Qver the course of the algorithm, the algorithm is invoked on
at most NlgN butterflies. The sum of the probabilities is at most 2lg? N/N*:=2. For any

constant ky, we can make this sum at most 1/N% by making ky large enough. Q

The remainder of the analysis is conditioned on the event that every butterfly is well-
partitioned and CI(1)-split, which occurs with high probability. Two technical points bear
mentioning. First, Lemma 22 requires that the number of inputs to every butterfly be at least
k21g? N, where k; is some constant. Since the recursion terminates when the number of inputs
is 2\/i‘_ﬁ, N must be large enough that VN ka1g? N. Second, botk Lemmas 22 and 23
liold independent of the number of packets to be sorted by each butterfly. Thus, as the following
lemmas show, we can xdjust the load on the butterfly in order to ensure that each M-input

butterfly reccives at most M packets to sort.
Lemma 24 The number of levels of recursion is O(loglog N).

Proof: At each level of recursion the number of inputs drops from M to at most 2V/M/lg N,
until the number of inputs reaches 2V'6¥, 0

G4 CHAPTER 1. PACKET ROUTING ALGORITHMS

Lemma 28 There is an a > 0 such that if the number of packets Lo be sorted is N/1g® N, then
the number of packets are assigned to any M-input butlerfly is at most M.

Proof: Since the ratio of packets to inputs is 1/1g®+! N at the top level of the recursion, and
increases by at most a constant factor at each of O(loglog N) levels, it is possible to choose a

such that at the bottom level it will be at most one. @)

1.9.4 Bounding the congestion at each switch

The second step in the analysis is to bound the probability that too many packets pass through
any switch in Steps 6 and 7. The following lemma provides a bound on the probability that

the congestion, ¢, in an M-input butterfly excceds Ig A in either of of these steps.

Lemma 28 Therz is a fized constant 8, such that for s > g M,
]
Prlc2 3] < (—p;'-) .

Proof: For the sake of brevity, we examine Step 7 only. A similar (aud simpler) analysis holds
for Step 6.

We begin by counting the number of packets that can possibly use 2 switch. Let L denote
the depth of an M-input butterfly, i.c., L = lg M. From a switch at level 1, 0 < I < L, 25!
rows cen be reached. The splitters partition these rows into subbutterfiies. From tiie previous
argument, the number of packets that enter cach of these subbutterflies is at most the number
of inputs, with high probability. Thus, at most 25! packets can pass through the switch.

Next we determine the probability that a packet that can pass through the switch actually
docs so. A switch at level 7 can be reached from 2' different inputs. Since each packet begins
in a random input, the probability that it can reach the switch is 2/-%,

The nuraber of packets, 5, that pass through a particular awitch at level ! has a binomial
distribution. The number of trials is r = 2~/ and the probability of success is p = 2!-L,
Thus, P1[§ = 5] = (2";‘) (2"‘")’ (1 - 2"'")2’--'-' . Using the incquality (§) < (ae/b)b, we have
Pr[S = 3] £ (e/s)'. For s > 1, the right-hand side decreases by at least a constany factor with

each increase of 1 in s. Thus Pr[S > 5] £ O ((e/s)*).

1.9, SORTING ON BUTTERFLIES 65

We bound the congestion in the entire butterfly by summing the individual probabilities
over all 29(8) 3witches in the buttarfly, We have

Prle2 9] < 20(L) (-E-)

For & > L, we have Pric > s} < (01/9)" for some constant §,. o

1.9.5 Bounding the cumulative delay

Since a subbutterfly does not begin to execute its algorit*in until the larger butterfly at the
previous level of recursion is finished, delay in excess of the time allotted to each butterfly
accumulates over the course of the algorithm. An M-input butterfly is allotted O(log M)
time to perform its steps. However, Steps 6, 7, and 8 are not guaranteed to terminate in
lime O(log Mf). It is tempting to try to prove that these steps terminate quickly with high
probability. This approach fails because at the Jower levels of the recursion the problem size
is so small that nothing can be ascertained with high pmbability..lnstead we must argue that
although delay may occur at any particular step, it is unlikely that alot of delay will accumulate
over a sequence of steps.

The delay from Step 8 is relatively easy to analyze. This step requires O(c + L) time; the
delay depends only on the congestion. Lemma 26 bounds the probability that the congestion
is large.

There are two possible causes of delay in Steps 6 and 7. A poor set of random rows for
the packets can cause congestion at some node, which guarantees that some packet will arrive
at its destination late. On the other hand, even if the congestion is small, a poor choive for
the random ranks used by the scheduling algorithin may delay a packet. The following pair of
lemmas bounds the probability that the delay from these steps islarge. The first is a restatement
of the main scheduling theorem for layered networks. It bounds the probability that a packet
will be delayed when the congestion is small. The second puts this bound together with the

bound that the congestion is large from Lemma 26.

Lemma 27 For a bounded-degree layered network with L levels and a set of 22 packets whose
paths have conyestion c, there is a fixed constant 82 such that the probability that any packet

arrives al ils destination after time w, w > L, is at most (Sy¢/w)¥.

66 CHAPTER 1. PACKET ROUTING ALGORITHMS

Lemma 28 There is a constanl B3 >) such that the probabilily Steps & asd 7 require more
than w time steps, w > L, is al most 2{1 /)",

Proof: For the sake of brevity, we examine Step 7 only, A similar analysis holds for Step 6.
\We break the analysis into two cases according to whether the congestion is small or large,

Let T be the time at which the last packet arrives. Then

PrI'> w] £ Prl" 2 wlc < w/fafh) + Prlc > w/fhfs).

We use Lemmp», 27 to bound the first term on the right., Plugging in w/faf; for ¢ yields
Pr{T 2 wlc < w/Bifs) € (1/B3)*. We use Lemma 26 to bound the second term on the right.

Plugging in w/Baf for ¢ yields Pre > w/B2fs) € (Bifafy/w)*. Since w > L 2 /IgN, and
Bi, B, and B3 are constants, w > £, 6203 for sufficiently large N. a

The following lanmz bounds the combined delay of Steps 6, 7, 8.

Lemma 20 There are constants By and fs > 1 such that the probabilily that Steps 6, 7, 8
together require time B L, + w is at most (1/85)¥.

Proof: Step 8 can be performed deterministically in time O(c 4 L). From Lemma 26 we have
Prlc > 8] £(B1/s)*, for ¢ > L. For our purposes, a weaker bound on this probability suffices.
Since f; is a constant, there is a constant ky such that (1/k,)* £ (81/s)* for sufficiently large

L. Combining this bound with that of Lemma 27 yields the desired result. a

‘To complete our analysis of the algorithm, we nced to bound the probability that more than

O(log N) delay accrues during the sort.

Lemma 30 For any fized constant ky, there is a constant ky such that the probability that the

cumulative delay is more than kylg N is at most 1/N%,

Proof: The cumulative delay at the bottom level of the recursion is the sum of the delay at
cach of the butterflies on the branch of the recursion tree from the top level to the leaf. Let D;
be the delay beyond 4L at the ith level of the recursion. Then Pr[D; = w] < (1/85)". Notice

that there is no dependence on ¢ in this expression. Let D be the cumulative delay on a branch

1.9. SORTING ON BUTTERFLIES 67

of the recursion from the top level to a leafl. Then D = 2,-0_(:,"‘“‘") D;. Generating functions

help us here. The generating function for D; is

Gp,(3)= i Pr{D; = w)=",

wn(

where 2 can be thought of as a place holder. To sum the delay, we simply multi.
ply the generating functions. Thus, the generating function for the cumulative delay is
Gp(z) = NIUs M) Gp (2). The coefficient of =¥ in Gp(z) is (WHOUSkEN) (17500, For
w = O(loglog N), this coeflicient is at most (O(1)/fs)¥. For any ks, there is a k3 such that
T oouks g N (O(1)/Bs)" is at most 1/Nk,

‘To bound the probability that the cumulative delay exceeds k;1g N on any branch of the
recursion, we sum the individual probabilities for all of the branches. There are at most N
branches. Thus, the sum is at most 1/N*3=1, For any k;, there i a ky such that this sum i at
most 1/ Nk, . 0

1.9.6 Putting it all together

Theorem 31 With high probability, an NlgN-node butterfly can sort NIgN packets in

O(log N) steps using constant-size queues.

Proof: The algorithm for sorting N lg N packets on an N lg N-node butterfly uses the algo-
rithm for sorting N/1g® N packets as a subroutine. First each packet independently chooses
to be a splitter with probability 1/1g®+! N. With high probability, this leaves O(N/log® N)
candidates. The candidates are sorted using the subroutine. Then every lg Nth candidate is
selected to be a splitter, leaving O(N/log®*+! N) splitters. The splitters are distributed through-
out the butterfly, and splitter-directed routing is used to route intervals of size O(log®*? N)
to subbutterflies with ©(log®*! N) inputs. Now each interval of O(log®+? N) packets resides
in a group of O(log®*+! N) butterfly rows. Each of these rows contains O(log N) packets. The
packets in each row can be sorted in O(log N) time using an odd-even transposition sort. With

a fixed number of row sorts and permutations, all of the packets can be sorted in O(log N) time

using Columnsort. O

68 CHAPTER 1. PACKET ROUTING ALGORITHMS

1.10 Counterexamples to on-line algorithms

‘This scction presents examples where several natural on-line scheduling strategies do poorly.
Based on these examples, we suspect that finding an on-line algorithm that can schedule any
set of paths in O(c + d) steps using constant-size queucs will be a challenging task,

In the first example, we describe an N.node network in which a set of packets with con.
gestion and dilation O(1) requires Q{log? N/ loglog N') steps to be delivered using the strategy
of Scction 1.3. This example does not contradict the results of Section 1.3, since the network
has ©(log? N) levels. However, it shows that reducing the congestion and dilation below the

number of levels will not necessarily improve the running time.

Observation 32 For the stralegy of Scction 1.8, there is an N-node dirccted acyclic nelwork
of degree 3 and « sel of paths with congestion ¢ = 3 and dilation d = 3 where the cxpected length
of the schedule is Q(log? N/ loglog N).

Proof: The network consists of many disjoint copies of the subnetwork pictured in Figure 1-16.
For simplicity, we dispense with the initial queues; the packets originate in edge queues. The
subnetwork is composed of k/log k linear chains of length A, where & shall later be shown to
be O(log N). The second node of eazh linear chain is connected to the second tc last node
of the previous chain by a diagonal edge. We assume that at the end of cach edge there is a
queue that can store 2 packets. Initially, the queue into the first node of each chain contains an
end-of-stream (EOS) signal and one packet, and the queue into the second node contains two
packets. A packet'’s destination is the last node in the previous chain. Each packet takes the
diagonal edge to the previous chain and then the last edge in the chain. Thus, the length of
the longest path is d = 3.

When the ranks ry,... 73/ 10g & Of the packels py,...,pak/10gk 2re cliosen so that r; < riy
for 1 £ i < 3k/logk, packet pak/iogk requires Q(k?/log k) steps to reach its destination. The
scenario unfolds as follows. Packets p; and p; take a diagonal edge in the first two steps. These
packets cannot advance until the EOS reaches the end of the first chain, in step k. In the
meantime, ghosts with ranks ry, r2, and r3, travel down the second chain, but packet ps blocks
an EOS signal from traveling down the chain. Packets py and ps are waiting for this EOS signal.

They cannot advance until step 2k. In this fashion, the delay is propagated down to packet

e e e e e e e e ¢ e e . e e e et = e
———— ——————— T —

.

1.10. COUNTEREXAMPLES TQ ON-LINE ALGORITHMS 69

EOS pl ‘-0-—. pz Pl .(4-{— =0]

k/log k
EOS Py - Ps &%
[]
]
[]
Figure 1-16: Example 1.
P3k/log k-

A simple calculation reveals that the probability that r; < 1:.-“ for 1 <i < 3k/logk is
1/28(k), Thus, if we have 29(%) copies of the subnetwork, we expect the ranks of the packets
to be sorted in one of them. For the total number of nodes in the network to be N, we need
k = ©(log N). In this case, we cxpect some packet to be delayed Q(log? N/loglog N) steps in
one copy of the subnetwork. a

It is somewhat unfair to say that the optimal schedule for this example has length O(c+d) =
0(1), since ghosts and EOS signals must travel a distance of 6(log N'). However, even if the
EQS signals are replaced by packets with the appropriate ranks, the dilation is only O(log N),
and thus the optimum schedule has length O(log N).

The second example is quite general. It shows that for any deterministic strategy that
choosesr >o order in which packets pass through a switch independent of the future paths of
the pac there is a network and a set of paths with congestion ¢ and dilation d for which the
schedule produced has length at least ¢(d — 1)/logc. This observation covers strategies such
as giving priority to the packet that has spent the most (or least) time waiting in queues, and
giving priority to the packet that arrives first at a switch. The network is a complete binary

tree of height d — 1 with an auziliary edge from the root to an auziliary node.

Obser'ation 33 For any delerministic strategy that chooses the order in which packets through

70 CHAPTER 1. PACKET ROUTING ALGORITHMS

a switch independent of the paths that the packets take after they pass through the switch, there
is a nelwork and a set of paths with congestion ¢ and dilation d for which the schedule produced

has length ¢(d - 1)/ log c.

Proof: We construct the example for congestion ¢ and dilation d, E(c,d), recursively. The
base case is the example E(e,logc + 1). Each of the ¢ leaves sends a packet to the auxiliary
node, causing congestion ¢ in the auxiliary edge. The network for E(c,d) contains ¢ copies of
the network for E(c,d — logc). First, the auxiliary nodes for theses copies are paired up and
merged so that there are ¢/2 auxilinry nodes cach with two auxiliary edges into it. Next, the
auxiliary nodes become the leaves of a complete binary tree of height fogc — 1 with its own
auxiliary nede and edge. For cach copy of E(¢,d — log¢), the deterministic scheduling strategy
chooses some packet to cross its auxilizry edge 17 ¢, We extend the path of this packet so that
it traverses the auxiliary edge in E(c,d). The dilation of the new set of paths is d and the

congestion ¢. The length of the schedule, T'(c, d), is given by the recurrence

T(c,d—1 loge—1 d>1 1
Tle,d) > (cyd—~logec)+loge—14¢c d>logec+
loge+tc d=logc+1
and has solution T'(¢c,d) 2 c(d - 1)/logec. O

The third example shows that the simple look-ahead strategy of giving priority to the packet

with the farthest distance left to travel fails as well,

Observation 34 For the strategy in which the packet with the farthest distance left to travel (or
the farthest total distance to travel) is given priority, there is an N -node nelwork with diameter
O(VN) and a sct of paths with congestion O(v'N) and dilation O(V'N) for whick the schedule
produced has length Q(N).

Proof: The network consists of & linear chains labeled 0 through k — 1. Chain i is composed
of 3k — 2 - i nodes labeled 0 through 3k — 3 — i. It meets chain 1 41 at node k= 1 — i and at
every second node thereafter up to node k47 — 1. Figure 1-17 shows the network for k = 4.
We assume that the queue the end of each edge has urlimited size and that at each step a
node can send at most one paci at. Initially, the first node of each chain holds & packets. The

destination of each of these packets is the end of the chain. Note that packets in chain i have

1.10. COUNTEREXAMPLES TO ON-LINE ALGORITHMS 71

0 1 2 3 4 6 7 8 9
0 o—o O—0—0—0—0—0
1 O—0—0
2
3

Figure 1-17: Example 3.

higher priority than those in the chain i + 1 whenever they meet since the chain i packets must
travel one step farther than those in chain i 4 1.

The key to this example is that the packets in chain i + 1 are delayed by all of the packets
in chain t at every meeting point between chains § and i 4 1, Singe the packets in chain 0 are
never delayed and the packets in chain 1 are not delayed by any packets other than those in
chain 0, the packets in these two chains arrive at their one meeting point simultancously. At
this meeting point, the packets in chain G have priority and delay the packets in chain 1 by k
steps. In general, the packets in chains { and ¢ 4+ 1 arrive at meeting point j simultancously
because the packets in chain { have been delayed j — 1 times by chain { = 1 and the packets in
chain i 4 1 have been delayed j — 1 times by the chain i.

The claiin implies the theorem for k = v/N. The packets in chain k — 1 are delayed by k
packets ai each of k — 1 meeting points, resulting in a total delay of Q(N). a

The fourth example shows that the natural strategy of assigning priorities to the packets at

random is not effective either,

Observation 38 For the strategy of assigning eack packel a random rank and giving priority to
the packet with the lowest rank, there is an N-node network with diameter O(log N/loglog N)
and a set of paths with dilation d = O(log N/loglog N') and congestion ¢ = O(log N/loglog N)
where the ezpected length of the schedule is Q((log N/loglog N)*/?).

Proof: Asin Example 1, the network consists of many copies of a subnetwork, Each subnetwork

is constructed so that d = ¢ = k/logk. A subnetwork consists of a linear chain of length d,

72 CHAPTER 1. PACKET ROUTING ALGQORITHMS

d

—

OQ.
()

d

Figure 1-18: Example 4.

with loops of length v/d between adjacent nodes (see Figure 1-18). The packets are kroken into
V/d groups numbered 0 through v/d — 1 of Vd packets each. The packets in group i use the
lincar chain for iv/d steps and then use vid—i loops as their path. Asin Example 3, we assume
that queues have unlimited capacity and that at cach stzp a node can send a single packet.

If the random ranks are assigned so that the packets in group i have smaller ranks than
the packets in groups with larger numbers, then the packets in group i delay the packets in
groups with larger numbers by d — iv/d steps. Thus the last packet experiences an Q(d\/E) =
O((k/log k)*/?) delay.

Once again the ranks of the packets must have a specific order, which can be shown to
happen with high probability given cnough copies of the subnetwork. As in Observation 32, it

is not hard to show this requires k = O(log N). 0

1.11 Remarks

The scheduling algorithm from Section 1.3 can be used as a subroutine in algorithms for emu-
lating shared-memory machines on bounded-degree networks. A shared-memory machine with
a large address space can be emulated by randomly hashing the memory locations to the nodes
of a butterfly as in [35]} and [81]). The hashing ensures that the congestion of the packets im-

plementing each memory access step is small. The algorithm from Section 1.3 can be used to

1.11. REMARKS 73

schedule the the movements of these packets.

The algorithm for sorting on the butterfly with constant.size queues can modified to sort
kMX packets on a k-dimensional mesh with side length M in O(kM) time using constant-size
queues.

Given a set of n packets whose paths have congestion ¢ on a layered network with d levels,
a setting of ranks that enxures delivery in time O(c + d + logn) can be found can be found
off-line deterministically in time 20(c+4+1%n) The proof uses the Raghavan-Spencer technique
{78, 89] to sequentially find a setting of the ranks so that no bad event corresponding to a delay
scquence OCcurs,

One application is in preparing simulations by volume and area-universal networks off-line so
that no random bits are needed. As before, the firet step is to map the processors of the network
to be simulated, B, to the processors of the arca-universal network, U, from Section 1.8 using
the recursive decomposition strategy from (56). Network U has N processors, and B has arca
O(N). To simulate each step of B, network U must route a set of n = O(N/log N) messages
with load factor A = O(log N). The second step is to find paths for the messages. Since these
messages link the same processors at every step of B, it is sufficient to find paths once off-line.
They can be reused over and over during the simulation. Given a set of n messages with load
factor A, it is possible to find a set of paths with congestion ¢ = O(A + log M) and dilation
d = O(log M) in a fat-tree with root capacity M off-line deterministically in time polynomial
in n and M. The final step is to find a set of ranks for the messages. These ranks can also
be reused at cach step of the simulation. Network U has root capacity M = O(v'N/logN).
Thus, both the paths and the ranks for the packets can be determined off-line deterministically
in time polynomial in N so that the time to simulate each step of D is O(log N).

By making minor modifications to the definition of a delay sequence, it is possible to prove
that not only does the late arrival of some packet imply that a bad event occurs, but also if
a bad event occurs then some packet is delayed. More precisely, some packet arrives at step
d + w where w = m + ¢f if and only if there is a delay sequence of length | < d 4 2f —1 with
m + ¢f packets,

CHAPTER 1. PACKET ROUTING ALGORITHMS

Chapter 2

Distributed random-access

machines

2.1 Introduction

Underlying any realization of a parallel random-access machine (PRAM) is a communication
network that conveys information between processors and memory banks. Yet in most PRAM
modelg, communication issues are largely ignored. The basic assumption in these models is that
in unit time each processor can simultancously access one memory location. For truly large
parallel computers, however, computer engineers may be hard pressed to implement networks
with the communication bandwidth demanded by this assumption, due in part to packaging
constraints. The difficulty of building such networks threatens the validity of the PRAM as a
predictor of algorithmic performance. This chapter introduces a more restricted PRAM model,
which we call a distributed random-a«cess machine (DRAM), to reflect an assumption of limited
cornmunication bandwidth in the underlying network.

In a communication network, we can measure the cost of communication in terms of the
number of messages that must cross a cut of the network, as in [29] and [56). Specifically,

a cut § of a network! is a subset of the nodes of the network. The capacity cap($) is the

This chapter describes joint research with Charles Leiserson [58].

'We assume that in the communication network, each processor has its own local memory, the processors
are interconnected as a graph, and routing of messages is performed by the processors. The generalization to
the ;ase when processors, memories, and switches zre distinct entities is straightforward, but complicates the

75

76 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

number of wires connecting processors in S with processors in the rest of the network 3, i.e.,
the bandwidth of communication between § and 5. For a set M of messages, we define the load
of M on acut § to be the number of messages in Af whose source isin § and whose destination

is in 3 or vice versa. The load factor of Af on S is

load(M, S)
cap(§) '’

and the load factor of A on the entire network is

AM,S) =

A(AM) = max (M,).

The load factor provides a simple lower bound on the time required to deliver a set of messages.
For instance, if there are 10 messages to be sent across a cut of capacity 3, the time required
to deliver all 10 messages is at least the load factor 10/3.

There are two commonly occurring types of message congestion that theload factor measures
cffectively. One is the “hot spot” phenomenon identified by Pfister and Norton [75]. When
many processors send messages to a single other processor, large dcla.ys can be experienced as
messages queue for access to that other processor. In this situation, the load factor on the cut
that isolates the single processor is high. The second phenomenon is message congestion due to
pinboundedness. In this case, it is the limited bandwidth imposed by the packaging technology
that can cause high load factors. For example, the cut of the network that limits communication
performance for some set of messages might correspond to the pins on a printed-circuit board
or to the cables between two cabinets.

The load-factor lower bound can be met to within a polylogarithmic factor as an upper
bound on many networks, including volume and area-universal networks, such as fat-trees
(29, 56), as well as the standard universal routing networks, such as the Boolean hypercube
{96]. The lower bound is weak on the standard universal routing networks because every cut
of these networks is large relative to the number of processors in the smaller side of the cut,
but these networks may be more difficult to construct on a large scale because of packaging
limitations. Networks for which the load factor lower bound cannot be approached to witl.'n
a polylogarithmic factor as an upper bound include linear arrays, meshes, and high-diameter

networks in general.

definitions.

2.2. THE DRAM MODEL 77

In the PRAM model, the issue of communication bandwidth does not arise even though
most parallel computers implement remote memory accesses by routing messages through an
underlying network. In the PRAM model, a set of memory accessex is presumed to take unit
time, reflecting the assumption that all sets of incssages can be routed through the network
with comparable case. In the DRAM model, a set of memory accesses takes time equal to the
load factor of the set of messages, which reflects the unequal times required to route sets of
messages with different load factors.

This chapter gives DRAM algorithms that solve many graph problems with efficient com-
munication. Our algorithms can be exesuted on any of the popular PRAM models because a
PRAM can be viewed as a DRAM in which communication costs are ignored.

The remainder of this chapter is organized as follows. Section 2.2 contains a specification
of the DRAM: model and the implementation of data structures in the model. The section
demonstrates how a DRAM models the congestion produced by techniques such as “recursive
doubling” that are frequently used in PRAM algorithms, Section 2.3 defines the notion of a
conservalive algorithm as a concrete realization of a communication-cfficient DRAM algorithm,
and gives a “Shortcut Lemma” that forms the basis of the conservative algorithins in this
chapter. Scction 2.4 presenis a conservative “recursive pairing™ technique that can be used to
perform many of the same functions as on lists as recursive doubling. Section 2.5 presents a
linear-space exclusive-read exclusive-write conservative “tree contraction” algorithm based on
the ideas of Miller and Reif [68). Section 2.6 presents trecjiz computations, which are generaliza-
tions of the parallel prefix computation [16, 24, 71} to trees. We show that treefix computations
can be performed using the tree contraction algorithm of Section 2.5. Scction 2.7 gives short,
cfficient, parallel algorithms for tree and graph problems, most of which are based on treefix
computations. Section 2.8 explores the use of concurrent reads and writes in DRAM algorithms.
Section 2.9 discusses the relationship between the DRAM model and more traditional PRAM

models, as well as the ramifications of using the DRAM model in practical situations.

2.2 The DRAM model

This section introduces the abstraction of a distributed random-access machine (DRAM). We

show how a parallel data structure can be embedded in a DRAM, and we define the load

78 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

factor of a duta structure. We show how the embedding of a data structure in a network
can cause congestion in the underlying network when the pointers of the data structure are
accessed in parallel, and we also demonstrate that a parallel algozithm can produce substaniial
congestion in an underlying network, even when there is little congestion implicit in the input

data stracture. We illustrate how a DRAM accurately models these two phenoinena.

A DRAM consists of a set of n processors. All memory in the DRAM is local to the
processors, with each processor holding a small number of O(lgn)-bit registers. A processor
can read, write, and perform avithmetic and logical functions on values stored in its local
memory. It can also read and write memory in other processors. (A processor can transfer
information between two remote memory Jocations through the use of local temporaries.) Each
set of memory accesses is performad in a memory access step, and any of the standard PRAM
assumptions about simultancous reads or writes can be made. Our algorithms use only mutually

exclusive memory references, howavar, so these special cases never arise.

The essential difference between a DRAM and a PRAM is that th; DRAM models commu-
nication costs. We presume that remote memory accesses are implemented by routing messages
Lthrough an undeslying network. \We model the communication limitations imposed by the net-
work by assigning & numerical capacity cap(S) to each cut (subsct of processors) S of the
DRAM equal to the number of wires connecting processors in § with processors in the rest
of the network. Thus, thiere are many different DRAM’s corresponding to the many possible
assignments of capacities to cuts. For a set Af of memory accesses, we define load(M, S) to be
the number of aceesses in Af from a processor in § to a processor in 3 (the rest of the DRAM),
or vice versa. The load factor of M on § is A(M,S) = load(AM, §)/cap(S), and the load factor
of A on the DRAM is A{(M) = maxg MM, S).

The basic assumption in the DRAM model is that the time required to perform a set M of
memory accesses is the load factor A(Af). (Local uperations take unit time.) This assumption
constitutes the principal difference between the DRAM and the network it models. We know
that the load factor is a lower bound on the time required in both the network and the DRAM.
If the asietwork’s message routing algorithm cannot approach this lower bound as an upper
bound (for example, if the network has high diameter), then the network is not wel! modeled

by the DRAM. If the network’s routing algorithm can nearly achieve the load factor as an upper

2.2, THE DRAM MCDEI 70

bound, then the analysis of an algorithm in the DRAM model will relinbly predict the actual
performance of the algorithm on the netwerk. Section 2.9 discusses some networks for which
the DRAM is a reasonable model, including volume-universal networks such as fat-trees [56).

A natural way to cmbed a data structure in a DRAM is to put one ricord of the data
structure into cach processor, as in the “data parallel” model (33). The record can contain data,
including pointeis (o records in other processors. We measure the quality of an embedding by
treating the data structure as a set of pointers and generalizing the concept of load factor to
scts of pointers. The load of a set P of pointers across a cut §, denoted load(P,S), is the
number of pointers in P from a processor in S to a processor in J, or vice versa. The load
factor of P on the entire DRAM is

_ load(P,S)
AP) = max ap(Sj °

The load factor of a data structure is the load factor of the set of ite pointers, For many
problems, good emieddings of data structures can be found in particular networks for which
the DRAM is a good abstraction (see Section 2.9).

There are generally two situations in which message congestion can arise during the execu-
tion of an algorithm on a network, both of which are modeled accurately by a DRAM whose cut
capacities correspond to the cut capacities of the network. In the first situation, the embedding
of a data structure cauzcs congestion because many of its pointers cross a relatively smatl ent
of e wetwork. A parallel access of the information across those pointers generates substantial
message traffic across the cut. In the second situation, the data struc*—ire is embedded with fow
pointers crossing the cut, but the algorithm itself gencrates substantial message traffic across
the cut. We now illustrate these two situations.

As an example of the first situation, consider an embedding of a simple linear list in which
alternate list elements are placed on opposite sides of a narrow cut of a network. If each element
fetches a value from the next element in the list, the load factor across the cut is large. In the
DRAM model, this congestion is modeled by the increase in time required for the memory
accesses across the cut. (Observe that in a PRAM model, the congestion is not modeled since
any set of memory accesses is assumed to take unit time.) Of course, a list can typically be
embedded in a network so that the number of list pointers crossing any cut is small compared

to the capacity of the cut, again a situation that can be modeled by a DRAM.

80 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

In the second situation, the congestion is produced by an algorithm. As an example, con-
sider the “recursive doubling™ or “pointer jumping” technique [101) used extensively by PRAM
algorithms in the literature. The idea is that cach clement i of a list initially has a pointer
1) to the next element in the list. At each step, element i computes p(i) —~ p(p(i)), doubling
the distance between i and the clement it points to, until it points to the end of the list. This
technique can be used, among other things, to compute the distance d(i) of cach clement i to
the end of the list. Initially, cach clement i sets d(i) — 1. At each pointer-jumping step, each
clement i not pointing to the end of the list computes d(i) s— d(i)+ d(p(i)). In a PRAM model,
the running time on a list of length n is O(lgn). Variants of this technique are used for path
compression, vertex numbering, and parallel prefix computations (68, 88, 92, 101].

We now show that recursive doubling can be expensive even when a wata structure has a
good embedding in a network. Figure 2-1 shows a cut of capacity 3 separating the two halves
of a linked list of 16 clements. In the first step of recursive doubling, the load on the cut is only
1 because the enly access across the cut occurs when clement 8 accesses the data in clement 9.
In the sccond step, the load is 2 because clement 7 accesens element 9 and clement 8 accesses
clement 10. In the third step, the load is 4, and in the fourth step, cach of the first eight
clements makes an access across the cut, creating a load of 8. Since the load factor of the cut in
the fourth step is 8/3, this set of accesses requires at least 3 time units. Whereas the capacity of
the cut is large enough to support the memory accesses across it in the first step, by the fourch
step, the cut capacity is insufficient. In a DRAM, this situation is modeled by the increased
time to perform the memory accesses in the fourth step compared with those in the first step.

The focus of this chapter is avoiding this second cause of congestion. In Section 2.4, we
shall show hiow a recursive pairing strategy can perform many of the same functions as recursive

doubling, but in a communication-efficient fashion.

2.3 Conservative algorithms

This section introduces the notion of a conservative algorithm. In the DRAM model, a conser-
vative algorithm is communication efficient in the sense that it never produces more congestion
across cuts of the DRAM than is implicit in the input data structure. We give an important

lemma that shows how pointers in a data structure can be “shortcut” without introducing

2.3. CONSERVATIVE ALGORITHMS 81

Figure 2-1: A cut of capacity 3 separating two halves of a linked list. The load of the list on
the cut is 1. At the final step of recursive doubling, each element on the left side of the cut
accesses an element on the right, which induces a load of 8 on the cut.

congestion.

L3

A conservalive algorithm is a DRAM algorithm in which the load factor of memory accesses
in any step is bounded by the load factor of the input data structure, independent of the cut
capacities of the DRAM on which the algorithm is executed. To be precise, we define a set A
of memory accesses to be conservative with respect to another set. M of memory accesses if for
ali cuts § of a DRAM, we have load()i, S) < load(M’, S). By implication, whatever the cut
capacities of the DRAM, we have A(A) £ A(M’). We make the natural extension of the term
conservative to sets of pointers and data structures. A conservative algorithm is thus one all
of whose memory accesses are conservative with respect to the input data structure. Thus, if
a conservative algorithm runs for T steps on an input data structure with load factes A, then

the total time for the algorithm is at most AT

If at every step, the memory accesses of an algorithm co. pond to a subset of pointers
in the input data structure, then the algorithm is certainly conservative since il M iz a subset
of M', then we have load(M) < load(M’). For example, synchronous distributed algorititms,
such as the network flow algorithms of Goldberg and Tarjan (26, 27}, are conservative for this
reason. We do not wish to restrict our attention to this limited class of conservative algorithms
because synchronous distributed algorithms caanot efficiently solva certain problems on graphs

with high diameter. For example, the problem considered-car¥ier of determining the distance of

82 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

a—t+b a-t>
(l:/ \\ \\

¢ b—t+c

o mor b

Figure 2.2: The Shortcut Lemma. In each of the four cascs illustrated, the load factor across
the cut is cither unchanged or diminished by replacing a — b and b —= ¢ witha = .

exch alement to the end of the list cannot be solved in less than linear time with a synchronous
distributed algorithm. A PRAM algorithm, however, can perform such the computation in
Jogarithmic time, for example, by recursive doubling, but recursive doubling is not conservative.

We would like to know conditions under which processors in a DRAM can communicate
dircctly with distant locations in a data structure without increasing communication require-
ments as measured by the load factor. The following simple, but important, lemma provides

conditions that are sufficient for any DRAM.

Lemma 36 (Shortcut Lemma) Suppose a set P of poinlers in a dala struclure contains

pointersa — b and b — c. Then the set Q of pointers defined by
Q=Pufa—c}-{a—b,b—c)

is conservalive with respect to P, Moreover, any set Q »f pointers is conservalive with respect

to another sct P of pointers if there ezist pointer-disjoint paths in P that connect the endpoints

of poinlers in Q.

Proof: We show only the first part of the lemma since the second part follows immediately by
induction. We shall show that lcad(Q,5) < load(P, §) for any cut § of the DRAM. Consider
the eight ways in which a, b, and ¢ can be assigned to sides of the partition induced by a cut .
ITalf the cases can be eliminated by symmetry if we assume that a is on the left side. In each of
the four remaining cases, the load across the cut is either unchanged or diminished when a — b

and b — ¢ are replaced with a — ¢, as is shown in Figure 2-2. O

24. LIST CONTRACTION 8

In summary, this section has introduced the notion of a conservative algorithm. An upper
bound on the time required by a conservative algorithm can be determined solely from the
embeidding of an input data structure on the DRAM, If the number of steps of the zonservative
algorithm is T and the load factor of the input data structure is X, then the total time is at
most AT. A user of a conservative algorithm tlierefore need only minimize the congestion of
pointers in the input data structure across cuts of the DRAM to minimize the time required by
the algorithm. If the embedding of the data structure is good, that is, its load factor is small,

then a conservative algorithm that uses a small number of steps runs fast.

2.4 List contraction

In this section we present a conservative “recursive pairing” algorithm, Algorithm I.C, that can
perform many of the same functions on lists as recursive doubling. The idea is to contract an
input list by repeatedly pairing and merging adjacent elements of the list until ¢ \y a single
clement remains. The merges are recorded as internal nodes of a binary contraction tree whose
leaves are the elements in the input list. After building the contraction tree, operations nuch
as broadcasting from the root or parallel prefix can be performed in a conservative fashion.
Algorithm LC is a randomized algorithm, and with high probability, the height of the con-
traction tree and the number of steps on a DRAM are both O(lgn). where n is the number
of clements in the input list. A deterministic variant based on deterministic coin tossing [20}
runs in O(lg nlg® m) steps, where m is the number of processors in the DRAM, and produces
a contraction tree of height O(lg n).

The recursive pairing strategy is illustrated in Figure 2-3 for a list (A, B,C, D, E). In the
first step, elements B and C pair and merge, as do elements D and E. The merges are shown as
contours in the figure. A new contracted list (A, BC, DE) is formed from the unpaired element
A and the two compound elements BC and DE. After the second step of the algorithm, the
contracted list consists of the clements ABC and DE. The third and final step reduces the list
to the single element ABCDE.

In Algorithm LC, the contours of Figure 2-3 are represented in a data structure called
a contraction tree. The leaves of the contraction tree are the list elements, and the internal

nodes are the contours. To maintain the contraction-tree data structure, the algorithm requires

84 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

constant extra space for cach element in the input list, Each processor contains two eleinents:
an clement in the input list, and a spare clement that will act as an internal node in the
contraction tree. We call the two clements in the same processor mates. Each clement holds
a pointer to an unused internal node, which for each list element initially points to its mate.
The use of spare nodes allows the algorithm to distribute the space for the internal nodes of
the contraction tree uniformly over the clements in the list. (Spare internal nodes are used in
(14] and [55) for similar reasons, but in a different context.)

We now describe the operation of Algorithm LC, which is illustrated in Figure 2.4 for the
example of Figure 2.3, (A description in pseudocode can be found in [57).) In the first step, each
dement of the input list randomly picks cither its left or right neighbor. An clement at the left
or right end of the list always picks its only neighbor. If two clements pick cach other, then they
merge. The merge is recorded by making the spare of the left element of the pair be the root of :
a new contraction tree. The spare of the right clement becomes the spare for the root, and the i
clements themselves become the children of the root. The roots of the new contraction trees
and the unpaired list elements now form themselves into a new list representing the contracted
list, upon which the algorithm operates recursively.

At cach step of the algorithm, any given clement of the contracted list is a set of consecutive
clements in the input list—a contour in Figure 2-3. The set is represented by a contraction-
tree data structure whose leaves are the elements of the set and whose internal nodes record
the merges. When the entire input list has been contracted to a single node, the algorithm
terminates and a single contraction tree records all of the merges.

To describe the efficiency of randomized algorithms such as Algorithin LC, we shall some-
times say that an algorithm runs in O(T(n)) sieps “with high probability,” by which we shall
mean that for any constant & > 0, there are constants ¢; > 0 and ¢ > 0 such that with

probability 1 — ¢;/n¥, the algorithm terminates in at most ¢;T'(n) steps.

Theorem 37 With high probability, Algorithm LC takes O(lg n) steps to construct a contrac-

tion tree for a list of n elements.

Proof: We show that the algorithm terminates after (k4 1)log, 3 n iterations with probability

at least 1 - 1/n*F. We use an accounting scheme involving “tokens” to analyze the algorithm.

24. LIST CONTRACTION 85

G

Figure 2-3: The recursive pairing strategy operating on a list (4, B,C, D, E). Merged nodes
are shown as contours, and the nesting of contours gives the structure of the contraction tree.

Initially, a unique token resides hetween each pair of clements in the input list. Whenever two
list elements pick each other, we destroy the token between them. For each token destroyed,
the length of the list decreases by one, and the algorithm terminates when no token remains.
In any iteration, an cxisting token has probability at least 1/4 of 'bcing destroyed. Thus, after
m iterations, a token has probability at most (3/4)™ of remaining in exisience. Let T; be the
cvent that token i exists after m iterations, and let T' be the event that any token remains after

m iterations. Then the probhability that any token remains after m iterations is given by

Pr{T} = Pr{liuTu...UTh}
< Pr{n)} 4+ Pr{Ta} +:+-4 Pr{Tha1}

< (n-1) (:-:-)m .

For m = (k 4 1) log, /3 n iterations, we have
3\ (k+1)logypsn
Pr{T} < (n-—1) (-,)
1
< P

0O

Theorem 38 With high probability, a contraction tree constructed by Algorithm LC on a list
of n. elements has height O(lgn).

86 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

—@)|
Dt @—mf

®

&O—> @)
=t @t

(®)

® ©0O ©

X
B ©

(e)

@ B © ©
® ©

Figure 2-4: The operation of Algorithm LC on the example of Figure 2-3. The input list is
(A,B,C, D, E), and the corresponding spares are in lower case. When elements B and C pair
and merge in the first step of the algorithm, the spare b becomes the root of a contraction tree
with leaves B and C to represent the compound node BC. The spare for b is ¢. At the end
of the first step, the list consisting of the elements A, b, and d represents the contracted list
(A,BC,DE). After two more contraction steps of Algorithm LC, the input list is contracted
to a single element ABCDE, which is represented by a contraction tree whose root is ¢ and
whose leaves are the elements of the input list (A, B, C, D, E).

2

O)

q .

24. LIST CONTRACTION 87

Proof: The height of the contraction tree is no greater than the number of iterations of
Algorithm LC. a

We now prove that Algorithin LC is consetvative.
Theorem 39 Algorithm LC is conservative.

Proof: By convention, let the mate of an element in the input list lie in the order between that
clement and its right neighbor. The key idea is that the order of the list clements and their
spares is preserved by the merging operation, and consequently, after each contraction step, the
pointers in the contracted list correspond to disjoint paths in the original list, and the pointers
hetween elements and their spares also correspond to disjoint paths, By the Shortcut Lemma
these two scts of pointers are 7 ach conservative with respect to the input list, and since ecach
set of memory accesses in a contraction step of the algorithm is a subsct of one of these two

sets, the algorithum is conservative. . a

Although a contraction tree itself is uot conservative with respect to an input list, it can
be used as a data structure in conservative algorithms. For example, contraction trees can be
used to efficiently broadcast a value to all of the elements of a list and to accumulate values
stored in each element of a list.

More generally, contraction trees are useful for performing prefic computations in a con-
servative fashion. Let D be a domain with a binary associative operation . and an identity
€. A prefix computation [16, 24, 71j on a list with elements z;,23,...,z, in D puts the value
Yi =21 +Z3--z; in element { for each i = 1,2,...,n,

A prefix computation on a list can be performed by a conservative, two-phase algorithm on
the contraction tree. The leaves of the contraction tree from left to right are the elements in
the list from z; to z,. The first phase proceeds bottom up on the tree. Each leaf passes its =
value to its parent. When an internal node receives a value 2; from its left child and a value z,
from its right child, the node saves the value z; and passes z; - 2. to its parent. When the root
receives values from its children, the second top-down rhase begins. The root passes ¢ to its
left child and its 2 value to its right child. When an internal node receives a value 2, from its
parent, it passes 2, to its left child, and passes z - z, to its right child. When a leaf receives z,

it computes y =z, - z.

S8 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

The number of steps required by the prefix computation is proportional to the height of the
tree, which with high probability is O(lgn). At each step, the algorithm communicates across
a set of pointers in the contraction tree, all of which are the same distance from the leaves in
the first phase, and the same distance from the root in the second. That this computation is

performed in a conservative fashion is a conscquence of the following lemma.,

Theorem 40 Let CT' be a contraction tree compuled by Algerithm LC on an input list 4, and
suppose P is a subsct of the pointers of CT. If no pointer in P is an ancestor of another pointer

in P, then P is conservative with respect to L.

Proof: An inorder traversal of CT alternately visits list clements (leaves) and their mates
(internal nedes) in the same order that the list elements and mates appear in L. Thus, if no
pointer in P is an ancestor of another pointer in P, the pointers in P correspond to disjoint
paths in L. By the Shortcut Lemma, any set of pointers that correspond to disjoint paths in

the list L are conservative with respect to L. a

Algorithm LC, which constructs a contraction tree in O(lgn) steps, is a randomized al-
gorithin. By using the “deterministic coin tossing” technique of Cole and Vishkin [20], the
algorithm can be performed nearly as well deterministically “pecifically, the randomized pair-
ing step can be performed deterministically in O(Ig® m) ste, . on a DRAM with m processors,
where Ig® m is the number of times the logarithin function must be successively applied to reduce
m o 2 value at most 1. The overall running time for list contraction is thus O(lg nlg® m).

As a final comment, we observe that with minor modifications, Algorithm LC can be used

to contract circular lists with the same complexity bounds as for linear lists.

2.5 Tree contraction

This section presents a conservative tree contraction algorithm, Algorithm TC, based on the
tree contraction ideas of Miller and Reif [68]. The algorithm uses a recursive pairing strategy
to build a contraction tree for an input binary tree in much the same manner as Algorithm LC
does for alist. With high probability, the height of the contra:tion tree and the number of steps
on a DRAM are both O(lg n), where n is the number of nodes in the input tree. A deterministic

variant runs in O(lgnlg® m) steps and produces a contraction tree of height O(lgn).

2.5. TREE CONTRACTION | 89

The recursive pairing strategy for trees is illustrated in Figure 2.5 {or a tree with nodes A,
B,C, D, E, and F. In the first step nodes A and B pair and merge, as do nodes C and D; the
merges arc shown as contours in the figure. A new contructed tree is formed from the unpaired
nodes £ and F, and the compound nodes AB and CD, In the next step of the algorithm, node
E pairs and merges with CD to form a node CDE. After two more steps the G-node input tree
has been contracted to a single node. Notice that each node shown as a contour in the figure
is a connected subgraph of the input tree, and that the node has at most two children in the

contracted tree.

Algorithm TC represents the contours of Figure 2-5 in a contraction-tree data structure in
the same manner as Algorithm LC represents the contours of Figure 2-3, Space for the internal
nodes of the contraction tree is again provided by spares. Initiaily, the spare of each node in

the input tree is its mate, an unused node stored in the sarne processor.

We now ouiline Algorithm TC in more detail. (A description in pseudocode can be found
in [57).) In the first step, nodes in the input tree are paired. The pairing strategy has each
node pick from among its neighbors according to how many children it has. A leaf picks its
parent with probability 1. A node with exactly one child picks either its child or its parent,
cach with probability 1/2. A node with two children picks either child, cach with probability
1/2. The root, which has no parent, picks its children with equal probability. If two nodes pick
cach other, then they merge. The merge is recorded oy making the spare of the parent in the
pair be the root of a new contraction tree. The spare of the child in the pair becomes the spare
for the root, and the parert and child themselves become the children of the root. ‘The new
nodes and the unpaired nodes form themselves into a new tree that represents the contracted
tree, upon which the algorithm operates recursively. The contracted tree is binary hecause the

pairing strategy ensures that no node with two children pairs with its parent.

In the next section, we shall nced to ezpand a contracted tree in order to describe treefix
computations recursively, Expansion consists of undoing the merges in the reverse of the order
in which they occurred. From the time that a parert and child merge to the time that the
node representing their merge in the contraction tree expands, the pointers of the pair are
undisturbed. Consequently. tiiese pointers can be used to restore the pointers of the neighbors

of the pair to the state they had immediately before the pair merged. To ensure that the merges

90 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

Figure 2.5: The recursive pairing strategy operating on a tree with nodes A,B,C,D,E, and F.
Merged nodes are shown as contours, and the nesting of contours gives the structure of the
contraction tree.

arc undone in the exact reverse order, as is assumed in the next section, it is helpful to store
in cach internal node of the contraction tree the step number in which the merge took place.
In fact, the tree can be expanded by a greedy strategy without consulting the number of the
contraction step at which each merge occurred.

The proof that with high probability, Algorithm TC takes O(lg n) steps to contract an input
binary tree to a single node requires three technical lemmas. The first lemma shows that in a
binary tree, the number of nodes with two children and the number of leaves are nearly equal.
The sccond lemma provides an elementary bound on the expectation of a discrete random
variable with a finite upper bound. The last lemma presents a Chernofl-type bound [18] on the

tail of a binomial distribution.

Lemnia 41 Suppose T = (V, E) is a rooted binary tree, and lel Vi, Vy and V, denole the sets
of nodes in T' (excluding the root), with zero, one, or two children, respectively, and let d(r) be

the degree of the root. Then we have

Vol = |Vo|+d(r).

2.5. TREE CONTRACTION 9l

Le...ma 42 Let X < b be a discrete random variable with expected value p. For w < b, we
have

p-w

X 2 .
Pr{X2>w} 2 Ty

(W

The final lemma presents a bound on the tail of a binomial distribution. Consider a set of ¢
independent Bernoulli trials, each occurring with probability p of success. The probability that

fewer than s successful trials occur is

a1 t
B(s,typ) = 3, P(L=-p)k .
k=Q k

The lemma bounds the probability D(s, !, p) that fewer than s successes occur in ¢ trials when

s<t/2and p<1/2. .

Lemma 43 For s < /2 and p < 1/2, we have

sen < (15E)a-n(5)
.

With these lemmas we can now prove that with high probability, Algorithm TC takes O(lg n)

eteps to contract a rooted binary tree to a single node.

Theorem 44 With high probability, Algorithm T'C takes O(1gn) contraction steps o contract

a rooled binary tree of n nodes to a single node.

Proof: The proof has three parts. First, we use Lemma 41 to show that if a rooted binary
tree has |V| nodes, the expected number of nodes pairing with a parent in a single contraction
step is at least [V| /4. Next, we use Lemma 42 to shuw that the probability that at least |V| /8
nodes pair with a parent in any step is at least 1/3. Finally, we use Lemma 43 to show for any
constant k, that after alogg; n steps, for some constent a > 2, the probability that the tree

has not contracted into a single node is O(1/n*).

92 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

We first show that the expectad number of nodes pairing with a parent is at least |V} /4,
provided that || > 1. A child is picked by its parent with probability 1 when its parent is a
degree-1 root, and 1/2 otherwise. Thus, i leaf pairs with its parent with probability at least
1/2, and a node (other than the root) with one child pairs with its parent with probability at
least 1/4. Let P be the number of nodes pairing with a parent. Then we have

ge) > Dol ML
aud applying Lemma 41 yields the desired result:

Ve I+|V|| !Vzl'*'d(") |V|
T

E(P)2

Now we show that the probability that at least [1/] /8 nodes pair with a parent in a single
contraction step is at least 1/3. We call such a step successful. At most half of the nodes pair
with their parents. Using Lemma 42 with &= [V] /2, w=|V| /8, and u > |V'| /4, we have

u .
Pr {P > W'} x
L

Finally, we show that with high prubability, Algorithm TC takes O(lg n) contraction steps
to contract the input. tree 2 3 single node. The size of the tree after a contraction following a
successful pairing step is at most 7/8 the size before the contraction. After logyr n successful
steps, the tree must consist of a single node. By Lemma 43, the probability that fewer than

logyy n succassful steps oceur in alogy; n steps is

B(loggsr n,alogyiyn,1/3) < 2((2/3)%ac)lsarrm
= onplota((2/3)%ec)

For any value k, we can choose a large enough so that B{logs)y n,alogg/zn,1/3) = O(1/nk).

In particular, for k =1 a value of a = 8 suffices. a

We now prove that Algorithm TC is communication efficient :a the DRAM model.
Theorem 45 Algorithm TC is conservalive,

Proof: Each node of a contracted tree is a connected sutigraph of the input tree. The ryot of

the contraction tree that represents the subgraph is calied the representalive of the subgraph.

2.6. TREEFIX COMPUTATIONS 93

The representative and its spare are each either a node of the subgraph or a mate of a node of
the subgraph.

Every set of memory accesses performed by the algorithim is of one of two types. In the
first type, cach representative of a subgraph communicates with its spare, if at all. In the
sccond type, each representative of a subgraph communicates with the representative of one
of its children in the contracted tree, In either of these two cases, the set of memory accesses
corresponds to a set of disjoint paths in the input graph, and hence, by the Shorteut Lemma,

is conservative with respect to the input graph. a

Tree contraction can be performed conservatively and deterministically on a DRAM with
m processors in O(lg nlg® m) steps using the deterministic coin-tossing algorithm of Cole znt.
Vishkin {20]. The key idea is that in Algorithn TC, the nodes that car pair form chains, and
hy Lemma 41 these chains contain at Jeast half the tres edges. The chains can be oriented from
child to parent in the tree, and deterministic coin tossing can be, used to perform the pairing

step in O(lg® m) steps.

2.6 Treefix computations

This section presents a generalization of the parallel prefix computation to binary trees. We
present two kinds of treefir computations—rootfiz and leaffiz—and show how they can beimple-
mented by an O(ign}-step conservative algorithm that uses O(n) space, where n is the numbes
of nodes in the input tree. As e shall see in Section 2.7, treefix computations can greatly sim-
plify the description of many parallel graph algorithms in the literature, and morcover, treefix
computations can be performed by conservative algorithms.

We begin with a definition of treefix computation.

Definition. Let D be a domain with a binary associative operation - and an identity €. Let T
be a rooted, binary tree in which cach vertex i € T has an assigned input value z; € D. The
roolfiz problem is to compute for each vertex i € T with parent j, the output value y; = y; - z;,
where y; = € if i is the root. The leaffiz problem is to compute for each vertex i € T with left

child j and right child k, the output value y; = z; - yj - yx, where y; = ¢ if ¢ has no left child

94 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

and yi = £ il { has no right child.

Simple examples of trecfix problems are compuiting the depth of each vertex in a ooted
binary tree and computing the size of each subtres. These and other examples appear in the
next section.

Like the prefix computation on lists, treefix computations can be performed directly on the

contraction tree, For zimplicity, however, we describe a recursive version.

Theorem 46 Let T' be a binary tree of n nodes on a DRAM with m processors. A roolfix or
leaffiz compulation can be performed on 1' by a conservative randomized algorithm which, with
high probability, takes O(lgn) steps, or by a conservalive deterministic algorithm which takes
C(lg nig® m) steps. Both algorithms use O(1) space per node of the tree.

Proof: Both treefix computations are performed by executing a single contraction step on the
input tree T' to produce a contracted tree 7Y. Each node in T’ is assigned an input value, and
the treefix computation is executed recursively on TY. The contracted tree TV is then expanded
to yield T once again, and the output value of each node in T is computed from the input
values of 7' and the output values of 7",

‘The algorithun for leaffix is basad on each node i maintaining a value s; which has the form
a;ub;uc;, where a;,b;,¢; € D are elements of the domain, and the character “u” represents
symbolically a slot 10 be filled in with 2 value. The number of slots is equal to the number of
children of the node, and each slot corresponds to 2 specific child. When a parent and child
pair during the course of the leaflix algorithm, the value of the child is substituted into the
corresponding slot in the value of its parent. For example, suppose node i pairs with its right
child 7, where the value of i is s; = a;uab;iic; and the value of j is s; = ajiub;. The value s,
of the merged node k is computed from s; and s; by substituting s; into the second slot in s;,
yielding the 'value sk = a;ub; - ajub; - ;. The - operations are carried out immediately so that
3; has the proper form.

The leaflix algorithm initializes each node i by 8; « z;, 8; ~ z;us, or 8; + z; 11 depending

on the number of children of node i. The algorithm then proceeds as follows. At the end of

a-contraction step, each node k in 7' that results from the merging of parent i and child j

27. GRAPH ALGORITHMS 95

computes its value sx by substituting s; into the appropriate slot of ;. The: leaffix algorithm is
then performed recursively on T using the s values as inputs and yielding y values as output,
(The y values contain no slots and are simply clements of the domain D.) During the expansion
step, the parent node 1§ sets y; — yi. Each child node j gets its output value y; by substituting
the y values of its children into the slots of s;.

In the rootfix algorithm, each node i maintains a value s;, as in the leaffix algorithm, but
cach §; now has the general form & = wa;, and the slot of a node corresponde to the node's
parent. The rootfi< algorithm initializes each node i by s; +— Lz, except for the root r which
perforins s, «— z,. After the pairs have been determined for the contraction step, each nede j
that is the child in a pair, and which itself has a child, substitutes s; in the appropriate slot
of its child’s value, At the end of a contraction step, each node k in 1/ that resulted from the
merging of parzut i and child j computes its value by sx «— 3;. The rootfix algorithm is then
performed recursively on T, yielding y values as output, During the expansion step, the parent
node i sets y; « yx. Each child node j gets its output value y; b): substituting y; into the slot
of 5.

The time and space bounds claimed in the theorem are apparent by inspection. Each step
of a treefix algorithm adds only a constant amount of work to a corresponding step in the tree
contraction and expansion algorithms. The additional space required by the treefix algorithms

is the O(1) space per node for the z, y, and s values. a

2.7 Graph algorithms

‘This section presents a collection of conservative DRAM algorithms for solving graph problems.
The algorithms use two processors per edge of an input graph G = (V, E) and require only
constant extra space in each processor. Most of the algorithms use treefix computations as
subroutines.

We represent cach vertex in an undirected graph G = (V, E) by a doubly linked incidence
ring of processors, one for each edge. Each element of the incidence ring contains pointers to
the next and previous elements in the ring, and one pointer for a graph edge. For each edge

(u,v) € E, the element in the incidence ring for u contains a pointer ¢o an edge element in the

90 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

incidence ring for v, and vice versa. A dirceted graph is represented in the same doubly linked
fashion, but the graph edges are labeled with their directions.

We represent trees with arbitrary vertex degrees by an incidence ring structure as well. Jf the
tree is directed, each ring has a unique principal element that points toward the root, Breaking
the incidence ring before the principal clement yields the standard binary-tree representation
of the tree (39, pp. 322-333).

\We now present brief descripticns of the algorithms. The performance is given in terms of
the nuraber of steps on a DRAM when the input representation has size n, We assume the
implicit tree contractions in the algorithms are performed by the randomized Algorithm TC.
Deterministic bounds can be obtained by multiplying the number of steps by O(lg* m), where
m is the number of processors. An upper bound on the time required in the DRAM model can
be ohtuinad by multiplying the number of steps by the load factor of the input.

Generalizad treefix. Perform a treefic operation on a directed iree with arbitrary verlex
degree. The inpul values {z;} are stored in the principal elements of the tree, which is «where
the oulput values {y;} are (o be placed. The lzaffix value at a node i whose children have values
Y1yY2y00+ Yk I8 ¥i =T Y1+ 2+ Yk Each non-principal element is assigned the identity € for
its valuc, A binary treefix computation performed on the binary trec representation underlying
the irce computes the desired values. Performance: O(lgn).

‘Tree functions. Given a dirccted tree, compule for each ri~le the number of descendants,
its height, or its depth. The number of descendaits for each node can be computed by a leaffix
computation with - as integer addition and z; = 1 for all nodes. The height of a node can also
be computed by a leaffix computation where a -4 = max(a + 1,5 4 1), the identity is ¢ = -1,
and z; = ~1 for all nodes.?2 The depth of a node can be computed by a rootfix computation
with . as addition and z; = 1 for all nodes except the root which has value 0. Performance:
O(ign).

Rooting an undirected tree. Pick a root of a trec with undirccted graph pointers, and
oricnt the graph pointers toward the rool. Form an “Eulerian tour” of the pointers of the

representation [92] by directing each element of the tree to link its incoming ring pointer with

?Technically, ¢ = —~1 is not an identity for the operation a b = max(a +1,b + 1). Nonetheless, this leaffix
computation correctly computes the height of each node in a binary tree. Moreover, this leaffix computation also
generalizes to a directed tree with arbitrary vertex degree.

2,7. GRAPH ALGORITHMS 97

its graph edge directed outward and its graph edge directed inward with its outgoing ring
pointer. Each graph edge is used twice in the tour, once in each direction, but each ring pointer
is used only once. Use Algorithm LC to form a contraction tree of the tour, Choose the root
of the contraction tree to be the root of the tree, and break the tour so that it begins with the
root. Use parallel prefix to number each node according to its first occurrence in the tour, Use
contraction trees to distribute the smallest value in each incidence ring to the elements of the

ring. Orient each graph edge from the larger value to the smaller. Performance: O(ign).

Rerooting a directed tree. Given a directed tree and another distinguished vertex k,
reorient the graph edges of the tree to point loward k. The algorithm for rooting a tree can be
used by picking k as the root instead of the root of the contraction iree, but a single treefix
computation suffices. Perform u leaffix computation with zx = 1 and z; = 0 if i # k, and use
Doolean OR for .. Each principal element whose leaffix value is 1 lies on the path from zx to
the root. Reverse the direction of the graph pointers of these elcm.ents. (Note: rerooting a tree

changes the principal elements.) Performance: O(lgn).

Tree-walk numberings of a binary tree. Number the nodes of a binary tree according
to th. = they would be visiled in a preorder/inorder/postorder irce walk. For each of the
walks, {1 compute yi, the number of nodes visited before the left subtree of k. Use a leaffix
computation tv cumpute the number sizey of the subtree rooted at k. We first compute the
preorder numbering. (For the purposes of these numbering algorithms, we consider the root to
be a left child.) If node k is a left child, set zx «— 1. If node k is a right child, set x4 to the
size of its sibling subtree plus 1. A rootfix computation with - yields yi, which is the prcorder
numbering of node k. The inorder numbering can be computed similarly. If node k is a left
child, set z; « 0. If k is a right child, set zx to the size of its sibling subtrce plus 1. Compute yi
for each node using a rootfix computation with 4. The inorder numbering of node & is y; plus
the size of its lefi subtree plus ! The postfix numbering can be computed by setting zx « 0
if node k is a left child, and by setting zx to the size of its sibling subtree if k is a right child.
After computing y; using a rootfix computation with +, the postfix numbering of node k is y;

plus the sizes of its two subtrees plus 1. Performance: O(lgn).

Prefix and postfix numberings of a directed tree. Number the edges of an arbitrary

directed tree according to the order they are visited in a preorder/nostorder tree walk. The

98 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

problem reduces to prefix/postfix numbering on the underlying binary tree representation.
Performance: O(Ig n).

Diameter and center of a tree. The diameter is the length of the longest path in the tree.
A cenler is u vertex v such that the longest path from v to a leaf is minimal over all vertices
in the tree. The diameter can be determined by rooting the tree and using rootfix to find the
farthest leafl from the root. Reroot the tree at this leaf. ‘The distance from the new root to
the farthest leaf is the diameter. (This algorithm is based on an analog algorithm attributed
to J. Wennmacker [23].) A center of the tree can be determined by finding a median element

of the path that realizes the diameter. Performance: O(lgn).

Centroid of a tree. A centroid is a vertez v such that the largest subtree with v as a leaf
is minimal over all vertices in the tree. A centroid can be determined by rooting the tree and
computing the size of cach subtree. By broadcasting the size m of the tree from the root, each
graph cdge in cach incidence ring can determine the number of clements on the other side of
the edge. For each incidence ring, compute the maximum of these v‘aluu. A vertex with the

minimum of these maximum values is a centroid. Performance: O(Ign).

Separator of a tree. A separator [62] is a partition of the vertices of an n-vertez ree into
three seis A, B, and C, with |A] £ 3n, |B| = 1, and |C| £ &n, such that no edge of the tree
goes belween a verler in A and a verlex in C. Determine a centroid of the tree. This vertex
is the scparator vertex in B. It remains to partition the remaining vertices between A and C.
For cach graph edge in the incidence ring, count the number of vertices in the subtree on the
other side of the edge. Put the largest subtrce in A. Use parallel prefix on the incidence ring to
compute a running sum of the sizes of the other subtrces. Put all subtrees whose prefix value

is at most 2n in C, and put the remainder in A. Performance: CG(ign).

Subexpression evaluation. Given a dirccted tree in which cach leaf has a value and each
internal node has an operator from {+,—,+, -}, compute for cach internal node the subezpres-
aion rooted at that node. A single leaffix-like computation suffices using the ideas of Brent (15)
and Miller and Reif [68]. Performance: O(lgn).

Minimum-cost spanning forest. A spanning forest of an undirected graph G = (V, E) is
a mazimal set F C E of edges that contains no cycles. Given an undirected graph G = (V,E)

and a cost function w : E — R, determine a spanning forest F such that the sum of the costs

2.7. GRAPH ALGORITHMS 99

(woights) of the edges in F is minimum. We give a conservative DRAM jmplementation of
Boruvka's algorithm, also attributed to Sollin [91, pp. 71-83]. We assume without loss of gen-
crality that the edge weights are distinct—otherwise, we can assign the weight of a graph edge
¢ between two incidence-ring elements with addresses a and b to be (w(e), max(a,bd), min(s,b))
and then compure weights lexicographically. We determine F by marking edges in G. Initially,
no edges are marked. At cach step of the algorithm, the currently marked graph edges form
a subforest of F. Break cach incidence ring by removing a single ring pointer, and direct the
resulting lincar Jist. At each step of the algorithum, the marked graph edges and the ring pointers
form « set {13} of rooted trees, where the index i of the tree is the address of the root. The
algorithm proceeds as follows. For cach tree 75, use a rootfix computation to broadcast ¢ to all
of the clements in L5, Use a leaffix computation on T; to determine an edge ¢ € E connecting an
edge clement u € T} with an edge clement v € T}, where § # j, with smallest weight. If no such
edge exists, the algorithm terminates. If T; picks the same edge as 15, the tree with smaller
index does nothing. Otherwise, mark ¢ as a member of F, directing it into T}, and reroot T
with u as the new root. Repeat this procedure until the algorithmn terminates. Performance:

O(ig? n).

Connected compcnents. Given an undirecled input graph G = (V, E), determine a
labeling 1 : V — Z such that I(v) = I(v') if and only if v and v' are in the sam= connccted
component of G. The algorithm is the same as the minimum spanning tree algorithm, choosing
the weight of a graph edge ¢ between incidence ring elements with addresses a and b to be

(max(a, b),min(a,b)). The label of a vertex is the index of its tree. Performance: O(lg? n).

Biconnected components. Two edges of an undirccted graphk G = (V, E) are in the same
biconnected component if they liz on a common simple cycle. Delermine a labelingl: E — Z
such that l(e) = I(¢') if and only if ¢ aud ¢’ are in the same biconnecled component of G. We give
a conservative DRAM implementation oi th. biconnestivity algorithm of Tarjan and Vishkin
[92). We assume that the reader has zeme familiarity with that algorithm. Find a (directed)
minimum spanning tree T' = (V, F) of G. Number the vertices in the minimum spanning tree
in preorder. Use leaffix computations to compute for each vertex v three values: nd(v), low(v),
and high(v). The value nd(v) is the number of descendants of v, and low(v) (high(v)) is the

lowest (highest) numbered vertex (with respect to the preorder numbering of T') that is cither

100 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

a descendant of v or adjacend to a descendant of v by an edge of £ — F. Build a new graph G
where the edges of F are the vertices of G'. Let ¢ be an edge from u to p{u), where p{u) is the
parent of u in F. The adjacency ring for u in G acts as the adjacency ring for ¢ in G'. Add
two kinds of edges to G'. For cach edge {w,v} in £ — F such that v+ nd(v) £ w, add an edge
{{v,p(v)}, {w,{w)}} to G'. For each edge (v,p{v)) of F such that v # 1 and p(v) # 1, and
low(v) < v or high(v) > p(v) + nd(p(v)), add an edge {{v, ()}, {p(v),P(P(v))}} to G'. It can
be verified that the representation of G’ is conservative with respect to the representation of
G. Find the connected components of G'. Two edges of F are in the same blozk if as vertices
in G’ they are in the same connected component. Finally, for each edge ¢ = {w,v} in E~ F,
let I(e) = I({w, {w)}). Performance: O(Ig* n).

Eulerian cycle. An Eulerian cycle of an undirccted graph G = (V, E) is a cycle containing
cach edge in E exaclly once. If any vertex has odd degree, then no Eulerian cycle exists, Form a
set of disjoint cycles of the pointers of the representation of G as in the algorithm for directing a
tree. ‘The cycles can be merged using an algorithm similar to the minimum-cost-spanning-forest
algorithm (5, 7). Performance: O(lg? n).

2.8 Concurrent reads and writes

This section explores the use of concurrent reads and writes to memory in a DRAM. When
concurrent reads and writes are allowed, the definition of load must be modified so that the load
factor remains a lower bound on the time to deliver a set of messages. With the new definition
comes a new shorteut lemma. The shortcut lemma makes it possible to perform pointer-
jumping techniques similar to recursive doubling in a conservative fashion. As a consequence,
the minimum-cost spanning forest, connected components, and biconnected components prob-
lems can be solved in O(lgn) steps by conservative algorithms. These algorithms are faster
than the corresponding exclusive-read exclusive-write algorithms from the preceding section by
a factor of Ig n.

A concurrent read or write occurs when two or more processors attempt to read or write
the same memory location in a single memory access step. We shall assume that when several
processors make requests to read the contents of a location, all of the requests are satisfied. The

situation is more complicated when several processors attempt to write to the same location.

2.8. CONCURRENT READS AND WRITES 10!

We shall assume that there is some simple rule for combining multiple write requests to the
same location. For example, one of the requests may be arbitrarily cliosen to succeed while the

others are denied, or the sum of the requests may be written into the Jocation,

2.8.1 A new definition of load

A new measure of load is needed to model the implementation of concurrent reads and writes
by an underlying routing network. When several processors request to read a location, it is only
necessary for one copy of the data in that location to cross any cut of the undorl ing network.
Similarly, since multiple writes can be combined, at most one message carrying the data to be
written into any particular destination needs to cross any cut. The old definition of the load
of a set of messages M on a cut § was the number of messages in M whose source is in § and
whose destination is in 3, or vice versa. ‘This measure overestimates the number of messages
that must cross the cut when some of the messages have the same destination in 3, and can be
combined. Consequently, with this measure of load, the load factor is not necessarily a lower
bound on the time to deliver a set of messages. The new definition of the load of M on a cut
S is the number of different destinations in 3 of messages originating in §, or vice versa, The
definitions of a cut, the capacity of a cut, the load factor, and a conservative algor..hm remain
the same. With the new measure of load, the load factor is a lower bound on the time required
to deliver the messages.

The change in the definition of load raises the hope that standard PRAM techniques such as
recursive doubling are conservative after all. However, returning to the example of Figure 2-1,
we sce that after the fourth step, each of the first eight elements in the list points to a different
element on the other side of the cut. Thus, even with the new definition, the load on the cut
has increased from one to eight in three steps. Nevertheless, we will show that a slightly more

sophisticated pointer-jumping strategy is conservative.

2.8.2 A shortcut lemma for concurrent reads and writes

The following lemma shows that if all of the pointers into a particular processor are simultane-
ously shortcut, then the load factor does not increase. Note that unlike the original Shortcut

Lemma, the pointer & — ¢ is not removed from P.

102 CHAPTER 2, DISTRIBUTED RANDOM-ACCESS MACHINES

Lemma 4T Suppose a data structure consists of a sct P of poinlers on a set V of vertices and
that P contains a pointerb — ¢, Let R={x —~ b:x € V.x — b € P} be the set of poiriters in
P into b. Then the sct Q defined by

Q=PUlx—c:zeViz—~beER}-R
is conservalive with respect o P.

Proot: We will show that load(Q,S) < load(P, S) for any cut S of the DRAM. There are four
ways in which b and ¢ can be assigned to the partition induced by a cut §. Two of the cases
can be climinated by symmetry if we assume that b is on the left side. In both of the remaining
caxes, the load across the cut is either unchanged or diminished when all of the pointers of the
form x =+ b are replaced by pointers z — ¢, as shown in Figure 2.6. Note that if 4 and ¢ lie on
the left side of the cut, then all of the pointers into b from the right side of the cut must be

shortcut, or the load may increase. a

Corollary 48 Let B be a sct of nodes in V that ere independent with respect to P. For cach
y€ B lety — c(y) be a pointerout of y. Let R={z = y:x€V.y € B,z — y € P} be the sct
of pointcrs into the nodes of B. Then the set Q of pointers defined by

Q=PU{z—=¢(y):x,yeV,z—=yeR}-R
is conservalive with reepect to P,

Proof: The proof is by induction on the number of nodes in B. o)

2.8.3 A conservative pointer jumping technique

The corollary suggests the following conservative tree contraction technique: select a set of
independent internal (non-leaf) nodes, then shortcut all of the pointers into those nodes. When
the pointers into a node (excluding the rcot) are shortcut, the node becomes a leaf, Thus,
the shortcutting step can reduce, but not increase, the number of internal nodes. The step is
repeated until every node in the tree (including the root) points to the root. Such a tree is

called a star. Note that unlike the tree contraction algorithm from Section 2.5, the nuinber of

28. CONCURRENT READS AND \VRITES 103

1

Figure 2-6: A shortcut lemma for concurrent reads and writes. In each of the two cases
illustrated, the load factor across the cut is cither unchanged or diminished by replacing all of
the pointers of the form z — b with pointers of the form x — ¢.

X X X
T
gl

C"‘

—>

nodes in the tree does not decrease at each step, and the in.degree of the nodes in the tree can
grow.

It is relatively casy to find a large random independent set of internal nodes. First, each
internal node chooses to be a candidate with probability 1/2. *Next, all candidates whose
parcnts have also initially chosen to be candidates drop out of the running. The remaining
candidates form an independent set. At each step, every internal node except the root has
probability 1/4 of belonging to the set. Since the root points to itself, it will never be included.
By Lemma 42 the probability that at least 1/8 of the internal ncdes (excluding the root) belong
to the independent set, and thus become leaves, is at least 1/7.

The following lemma shows that if the independent sets are found this way, then the algo-

rithm requires O(lg n) steps, with high probability.

Lemma 49 With high prolability, the randomized pointer jumping algorithm takes O(lgn)

steps lo conltract an n-node dirccted tree to a slar.

Proof: The proof is nearly identical to the third parc of the proof of Theorem 4. 0

This conservative tree contraction technique can be applied when the input graph has the
doubly-linked incidence ring representation from Secticn 2.7. The representation of a directed
tree is itself a binary tree. After applying the tree contraction algorithm to the binary tree, all
of the clements in the representation hold pointers to the principal element on the incidence

ring of the root. Because an undirected tree can be rooted at any node, and any clement on the

104 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

incidence ring of the root can be chosen as its principal element, a star rooted at any element

in the representation of an undirected tree is conservative with respect to the representation.

2.8.4 A minimum-cost spanning forest algorithm

In this section we present an O(lg n)-step conservative algorithm for finding a minimum-cost
spanning forest of an n-node graph. The algorithm is based on the CRCW PRAM minimum.
cost spanning forest algorithm of Awerbuch and Shiloach (8], which in turn is based on the
connected components algorithm of Shiloach and Vishkin [88].

A minimum-cost spanning forest is defined in Section 2.7. As in that section, we assume
without loss of generality that all edge weights are distinct, so that an input graph G = (V, E)
has a unique minimum-cost spanning forest F.

The algorithm demarcates the minimum-cost apanning forest by marking edges as belonging
to F. Initially no edges are marked. At each step of the algorithm, the currently marked edges
form a subforest of F. Each connected component of the subforest is & tree. Asin the algorithm
from Section 2.7, for cach of these components, the algorithm maintains a separate directed
trce on the processors in the adjacency-ring representation of the component. However, unlike
that algorithm, the edges in the directed tree are not necessarily a subset of the ring and edge
pointers. As we shall see, each directed tree is nevertheless conservative with respect to the
adjacency-ring input representution of the corresponding component. We denote the set of
dirccted trees {T}}, whcre the index i of the tree is the address of the root. Initially, each node
in G is an isolated component, and its directed trec is a star on the nodes of its adjacency ring.
\When the algorithm terminates, each directed tree is a star on the nodes in the adjacency-ring
representation of a different connected component of F.

The algorithm proceeds in phases, cach consisting of two basic steps: star-hooking and
pointer-jumping. In the star-hooking step, the lowest cost edge connecting each star in {7}
to another component is marked as belonging to F, and the root of the star is made a child
of a node in the reighboring component. The pointes-jumping step is the same as thai in the
trce-contraction algorithm. The algorithm. repeats these steps until {T;} consists entirely of
stars, and none of these stars have any neighbors in G.

We now describe the star-hooking step in more detail. The first task is to determine which

2.8, CONCURRENT READS AND WRITES 105

component (if any) is adjacent to cach star via the lowest-cost edge. Each processor in a
star whose edge pointer leads outside the star writes the cost of the edge to the ront. These
concurrent writes are combined using the min operator, so that the lowest edge cost wins, If
the star has no neighbors, then it hecomes inactive. Also, if two stars select the same edge,
then the one with the lower index does nothing. Before the star is hooked into to another tree,
it is rerooted at the winning processor. The new root is huoked into the neighboring tree via
its edge pointer. If the node at the end of the edge pointer is a leaf, then the edge pointer is
shorcut so that the root points to the parent of the leaf. This last operation ensures both that
the star-hooking atep is conservative and that it does not increase the number of internal nodes
in {T¥).

The following pair of theorems show that the algorithm is conservative and that it requires

O(lg n) phasus, with high probability.

Theorem 50 With high probability, the algorithm requires O(1g n) phascs to find the minimum-
cost spanning forest of an n-node graph.

Proof: We bound the number of phases using a potentia’ function argument. The quantity
of interest is the number of internal nodes in active trees in {T7). Initially, there is a star of
height 1 for each of the n nodes in G, so there are n internal nodes. The star-hooking step
does not increase the number of internal nodes. After star hooking there are no active stars
remaining, %o every tree has height at least 2, Since roots are not included in the independent
set, in the worst case we expect 1/8 of the internal nodes to be placed in the set. By Lemma 42
the probability that at least 1/16 of the internal nodes become leaves is at least 1/15. The

remainder of the proof is like the third part of the proof of Theorem 44, a

Theorem 51 The algorithm is conservalive.

Proof: The key to the proof is that at the beginning of each phase, the set of directed trees,
{T;}, is conservative with respect to the adjacency-ring representation of the input g aph.
The proof is by induction on the number of phases completed. Before the first phase, {T;}
consists of a set of stars, one for each node in the input graph. Each star is conservative

with respect to the ring pointers in its adjacency ring. Now assume the inductive hypothesis.

106 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

The star-hooking step consists of rerootitig some stars, and hooking them into adjacent trees.
Rerooting is justified bocause, as we have previously observed, a star rooted at any node in
the adjacer cy-ring representation of the corresponding component is conservative with respect
to that representation. When hooking a root into a node in an adjacent tree via an edge
pointer, we must be ensure that the edge pointer is shortcut in the same way that any other
pointers inte that ncde have been shorteut, If the node is a leaf, then it may have belonged
to the independent set in some previous pointer-jumping step. In this case, the root must
be hooked into the node's parent. If the node is not a leaf then the pointers into the node
have never been shortcut. In this case, the root must be hooked into the node via its edge
pointer. In the poirter-jumping step, the pointers into an independent set of the nodes in {T})
are shortcut. By Lemma 48 the resulting set of trees remains conservative with respec” o the

input representation,

All communication in the algorithm is performed across edge pointers and directed tree
pointers. The cdge pointers are a subset of the pointers in the input representation, and as we

have just proved, the tree pointers are conservative with respect to the represertation. a

The algorithm can used as a subroutine in O(lg n)-step algorithms for finding the connected
and biconnected components of an n-node graph. The details of the reductions are presanted
in Section 2.7.

The algorithm can be made deterministic using the deterministic coin-tossing algorithm of
Cole and Vishkin [20). The goal is to find a large independent sct of non-root internal nodes
without using randomization. Let k be the number of internal sdes. The first step is to
remove the leaves of {T;} so that k nodes remain. Next, remove the roo's. Since every tree has
height at least 1 after the removal of the leaves, at least k/2 nodes are left. Next, remove any
remaining nodes with 2 or more children. Since there are k/2 edges (including the self-pointers
at the roots), this step removes at most k/4 nodes. At this point the graph consists of chains
only of chains. The deterministic coin-tossing technique can be used to select an independent
set of at least k/12 nodes in O{lg® m) steps, where m is the number of processors in the DRAM.

Thus, the time for the algorithm is O(lgnlg” m).

2.9. REMARKS 107

2.9 Remarks

‘This section offers a perspective on the DRAM model. Weexplore the analogy between PRAM’s
and universal networks on the one hand, and DRAM's and volume-universal networks on
the cther. We then discuss the issue of how data structures can be efficiently embedded in
DRAM’s—a problem not faced in the PRAM model. We alse suggest how one might define
the load factor for data structures other than graphs, such as matrices. Finally, we offer some
comments on how some of our definitions and techniques might be extended or generalized.

The literature contains a large body of results concerning universel networks, such as the
Boolean hypercube (96]. Universal networks are capable of simulating any PRAM jrogram
with at most polylogarithmic degradation in time (see, for example, the simulation (35] of an
EREW-PRAM on a butterfly network). In light of this work, one might wonder why the DRAM
model should be studied at all.

A potential problem with universal networks is that they may be difficult to physically con-
struct on a large scale. The number of external connections (pins) on a packaging unit (chip,
board, rack, cabinet) of an electronic system is typically much smaller than the number of com.
ponents that the packaging unit contains, and can be made larger only with great cost. When
a network is physicully constructed, each packaging unit contains a subset of the processors of
the network, and thus determines a cut of the network. For a universal network, the capacity
of every cut must be nearly as large as the number of processors on the smaller side of the cut;
otherwise, the load-factor lower bound would make it impossible to perform certain memory
accesses in polylogarithmic time. Thus, when a universal network is physica.y constructed,
the number of pins on a packaging unit must be nearly as large as the number of processors
in the unit. Consequently, if all the pin constraints are met, a packaging unit cannot contain
as many processors as might otherwise fit, Alternatively, if cach packaging unit contains its
full zomplement of processors, then pin limitations preclude the universal network from being
assembled.

The impact of pin constraints can be modeled theoretically in the three-dimensional VLSI
modal [51, 56] where hardware cost is measured by volume and the pinboundedness of a region
is measured by its surfuce area. In this model, the largest universal network that can fit in a

given volume V has only about V?/3 nodes. In the two-dimensional VLSI model (93], where

108 CHAPTER 2, DISTRIBUTED RANDOM-ACCESS MACHINES

pinboundedness is m. asured by perimeter, the bound is even worse.

Since the density of processors in a physical implementation of a universal network is low,
it is natural to wonder whether there are other networks that make more efficient use of hard-
ware. Recently, it has been shown that fat-trees [29, 5G] are such a class of “volume-universal®
notworks. A fat-trez of volume V can simulate any other network of comparable volume with
only polylogarithmic degradation in time. (Figure 2-7 shows an area-universal fat-tree.) Thus,
a fat-tree of volume V can efficiently simulate not only the universal networks with the same
volume, but also some networks with almost V' nodes. A key component in the proof that
fat-trees are volume-universal is an algorithim for routing a set of ncssages on a fat-tree in time

that is at most a polylogarithmic factor larger than the load factor.

With a suitable assignment of capacitics to cuts, the DRAM can abstract the essential
communication characteristics of volume and area-universal networks without relying in detail
on any particular network. Much as the PRAM can be viewed as an abstraction of a hypercube,
in that algorithins for a PRAM can be implemented on a hypercube with only polylogarithmic
performance degradation, the DRAM can be viewed as an abstraction of a volume or area-
universal network. Fast, communication.efficient algorithms on a DRAM with the appropriate
cut capacities translate directly to fast, coninunication-efficient algorithms on, for example, &

fﬂt"[ee.

We now turn to the problem of embedding data structures in DRAM’s, a problem that
must be faced by users of conservative algorithms if the algorithms are to run quickly. In
general, the problem of determining the best embedding for an arbitrary data structure is NP-
complete, but for many common situations, good embeddings can be found. Moreovesr, there
are many situations in which the input graph structure is simple and known a priori, and a

good embedding may be casy to construct.

To illustrate how the embedding problem can be solved in certain practical situations,
consider the class of DRAM’s whose cut capacities correspond to arca-universal fut-trees. For
this class of DRAM’s, the recursive structure of the underlying fat-tree network suggests that a
divide-and-conquer approach be taken. For example, a subproblem in switch-level simulation of
a VLSI circuit is the finding of electrically equivalent po:tions of the circuit. A naive divide and-

conquer embedding of the circuit on the fat-tree would yield small load factors for every cut.

2.9, REMARKS 109

Figure 2-7: A fat-trce network. An area-universal fat-tree, like the one shown, is capable of
efficiently simulating any other network of comparable area. Fat-trees are well modeled by
distributed random-access machines.

110 CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

Thus, our conservative connected-components algorithm would never cause undue congestion
in communicating messages in the underlying network, and the algorithm would run as fast as

on an expensive, high-bandwidth network.

For some graphs, it can be proved that divide and conquer yiclds near-optimal embeddings
on a fat-tree. Specifically, graphs for which a good separulor theorem [62] exists can be embed-
ded well. Examples include meshes, trees, planar graphs, and multigrids, Situations in which a
mesh might be used include systolic array computation 44, 55) and image processing. Planar
graphs and multigrids arise from the solution of sparse lincar systems of equations based on
the finite-elernent method. Consequently, conservative DRAM algorithms operating on good

cibeddings of these graphs would run fast on a fat-tree.

The algorithms presented in this chapter operate primarily on graphs for which there is a
natural definition of load factor. It is also possible to define the load factor of a data structure
that contains no explicit pointers. For example, it is natural to superimpose a mesh on the
matrix, as is suitable for systolic array comgputation (44, 55), and the load factor of the matrix

can be defined as the load factor of the mesh.

For some algorithms, the running time may be better characterized as a function of the load
factor of the output than the load factor of the input. As an example, consider the problem
of sorting a lincar list of elements. A natural question te ask is whether a list can be sorted
in a polylogarithmic number of steps where at each step, the load factor is bounded by the
load factor induced by the lincar list together with the permutation determined by the sorted
output. Such a sorting algorithm is known for fat-trees [36], hut whether such an algorithm

exists for general DRAM’s is an open question,

Whereas the Shortcut Lemma presented in this chapter holds for any network, for particular
networks, other shortcut lemmas may aold. For example, another shortcut lemma for fat-trees
is used in [64] to show that an optimal reordering of a linear list in a fat-tree can be determined

cfliciently by a conservative algorithin on the fat-tree.

As a final comment, we note that the notion of a conservative aigorithm may well be too
conservative. As a practical matter, it is probably not worth worrying whether every set of
memory accesses is conservative with respect to the input, as long as the load factor of memory

accesses is not much greater than the input load factor. For example, a contraction tree is not

2.9. REMARKS 111

conservative with respect to its input tree (though the levels of the contraction tree are), but
the load factor of the contraction tree is at most O(Ig n) times the input load factor. Algorithms
with this looser bound are somewhat easier to code bacause of the relaxed constraint, and they

should perform comparably.

112

CHAPTER 2. DISTRIBUTED RANDOM-ACCESS MACHINES

Chapter 3

Work-preserving emulations

3.1 Introduction

In this chaptet, we study the problem of emulating an Ng-node guest network G = (Vg, Eg)
on an Ny-node host network H = (Vy, Eyr) where Ny € Ng. Our goal is to emulate Tg steps
of any computation on G in Ty = STg steps on I where S (the slowdown of the emulation) is
as small as possible.

The slowdown of the emulation must always be at least as large as Ng/Ny since G has
Ng/Ny times as many processors as does M. If § = O(Ng/Ny), then we say that the emulation
is work-preserving because then the total work (i.e., the processor-time product) performed by
the emulating network (W) = Ty Ny) is within a constant factor of the work performed by the
guest network (Wg = TeNg). Such emulations achieve optimal speedup (to within a constant
factor) over sequential emulations of G since they use Ny processors to solve a problem O(Ny)
times faster than is possible with a single processor.

More generally, we say that there is a work-preserving emulation of a class of networks G
by a class of networks H with slowdown S() if for every N and T, we can emulate any T
steps of any S(N)N-node network in ¢ in O(S(N)T) steps on any N-node network in H. If
S(N) = O(log* N) for some constant a, then we say that the emulation is NC work-prescrving

since every step of G can be emulated in O(log® ') steps of H. If S(N) = O(N?) for some

This chapter describes joint research with Richard Kock, Tom Leighton, Satish Rao, and Arnold Rosenberg
[40).

113

1M CHAPTER 3. WORK-PRESERVING EMULATIONS

constant a, then we say that the emulation is polynomial time work-preserving, and so on. In
the speciat case that S(N) = O(1), we say that the emulation is real-time. Real-time emulatioas
are the hardest to obtain since we require the host network to emulate a guest network of the
same size with constant slowdown,

As a simple example, let G be the class of linear arrays, and A be the class of all bounded-
degree connected networks, It is well known [87] that an N-node linear array can be embedded
one-to-one in any connected bounded.degree N-node network with constant dilation and con-
gestion. (By an embedding of a graph G into a graph /[, we mean a mapping ¢ : G — I
that maps the nodes of G to the nodes of JI and the edges of G to paths in H. The dilation
of an embedding is the length of the longest path ¢(e) sorresponding to an edge of G. The
congestion of an embedding is the largest number of paths ¢(c) crossing « single edge of .
The load of an embedding is the maximum number of nodes of G mapped to a single node of
H. In a one-to-one embedding, the load is 1.) lence any N-node bounded degree connected
network JI can emulate any N-node linear array with constant slowdown, and thus there is a
real-time emulation of the class ¢ by the class 2.

As another simple example, consider the more interesting problem of emulating a butterfly
on a linear array. We will prove that the class of butterflies cannot be real-time emulated by
the class of linear arrays. (This should come as no surprise, although the proof is not entirely
trivial.) However, there is a simple work-preserving emulation of the class of butterflies by the
class of lincar arrays with slowdown 2V, In particular, consider an N2V.node butterfly with
nodes and cdges

V= {{i,)]1 <i< N,we {0,1}"}, and

E= {((it w)’ (i" w’))"' =i+ l,w’ =woruw = w(")}'

where w(?) denotes w except that the ith bit is changed. Then by mapping the 2V nodes of the
form (i,w) (where w € {0,1}") to the ith node of the lincar array, an N-node lincar array can
emulate an N2¥.node butterfly with 2V slowdown.

Secing this elementary example, one is tempted to ask if there are faster work-preserving
emulations of a butterfly on a linear array. In other words, can we emulate a smaller butterfly
(say with polynomial blowup) in a work-preserving fashion on a linear array? Although the

proof is not obvious, the answer is no. There is no polynomial-time work preserving emulation

3.1. INTRODUCTION 115

of the class of hutterfiies by the class of linear arrays. Any such emulation requires exponential
slowdown. Alternatively, we might wonder if a linear array can emulate any bounded.degree
network in a work-preserving fashion given enough slowdown. Again, the answer is no. Al
though the linear array can emulate a butterfly in a work-preserving fashion, it cannot emulate
any expander, no matter how much blowup is allowed. In fact, by combining these results
wa can conclude that even a butterfly is not sufficiently powerf{ul to emulate an expander in a
work-preserving fashion.

We also consider emulations that are not work-preserving. Such emulations are (by defi-
nition) inefficient, and we define the inefficiency of such an emulation to be J = Wy /Wg. In
these terms, an emulation is work-preserving if it has constant inefficiency. Many of our bounds
will reflect tradeofls between slowdown and inefficiency. In general,

)
I=5

where C = Ng /Ny is the contraction of an emulation. :

3.1.1 The motivation

‘There are several good reasons for studying the problem of emulating one network on another
in a work-preserving fashion. First, this kind of analysis gives us an excellent means by which to
compare the computationa! power of one network relative to that of another. More importantly,
it gives us an automatic way to compile and run algorithms designed for one kind of parallel
architecture without loss of efficiency on another. This is provided, of course, that the ratio
of the size of the problem to the size of the machine is large enough. For example, we have
already seen that a small linear array (which has a very simple structure) is just as efficient in
terms of work as a very large butterfly (which has a more complicated structure).

Mote generally, the study of work-preserving emulations lies at the heart of efficient parallel
computing. Indeed, sne of the central problems in efficient parallel computing is the task of
mapping a collection of processes linked by precedence and/or communication constraints onto

the processors and routing network of a parallel machine so that

1. the processing load imposed on the processors is balanced,

2. the communication between processors can be handled efficiently, and

116 CHAPTER 3. WORK-PRESERVING EMULATIONS

3, the computation and communication can be scheduled so that the necessary inputs for a

process are available where and whisn the process is £-heduled to be computed.

In other words, we would like to schedule the communication and computation in a way that
takes maximum advantage of the available hardware to minimize the completion time of the
job,

In general, we can model the computation to be perfornied by a DAG. Each node of the
DAG represents a process und each directed edge (u, v) represents a communication that must
take place between u and v, Typically, this communication represents data output from u
after u is completed which is to be input to v before v is started. ‘The parallel machine can
be modeled as an undirected network. The nodes of the network correspond to processors,
and the cdges correspor ” o communication links between processors (and/or their associated
memories). The implementation of the computation to be performed on the parallel machine
then corresponds to an embedding of the DAG in the network so that nodes of the DAG are
mapped to nodes of the network and so that cdges of the DAG are mapped to paths in the
network. We may also need to constrest a schedule that specifies the communication and
computation of the DAG that is being performed during each step of the network. This will be
particularly important if the paralle; machine is synchronous.

In many applications, the DAG possesses a very natural structure. For example, typical
DAGs encountered in practire are derivatives of a binary tree, array, butterfly, or shuffle.
exchange graph. This is often due to the fact that the DAG is associated with an algorithm
whose inherent underlying structure is a tree or array (as is the case for many problems in
numerical analysis and linear algebra) or a butterfly or shuffle-exchange graph (as is the case
for Fourier Transform and data manipulation problems). Alternatively, it could be that the
DAG was constructed from an algorithm specifically designed for use on one of these common
parallel architectures.

Similarly, parallel networks also tend to be very naturally structured and typically are
configured as trees, arrays, butterflies, and the like. Hence, the mapping problem often consists
of emulating Tg steps of one Ng-node network (represented as a Tg Ng-node DAG) on an Ny-
node network with a different structure. Ideally, we would like to perform the computation in

O(TgNg/Ni) steps, which is precisely the problem of finding a work-preserving emulation of

3.1. INTRODUCTION 117

one network on another.

In practice, the guest network can be substantially larger than the host network. For
example, it is not uncommon for a parallel machine with between 8 and 256 processors to
be emulating array-based computations involving hundreds of thousands of data points. In
such examples, even work-preserving emulations with exponential slowdown may be within the
scope of practicality. Indeed, the most important feature of the computation is that it be

work-preserving.

3.1.2 A closer look at the computational model

If we can find an embedding of a graph G into a graph J with constant dilation, congestion, and
load, then it is fairly clear that Jf can emulate G with constant slowdown. Is the reverse true?
Somewhat surprisingly, it is not. For example, Bhatt, Chung, Hong, Leighton and Rosenberg
(11) proved that any embedding of an N-nade mesh into an N-node butterfly with constant load
requires dilation Q(log N), the worst possible. At first glance, it might seem that this result
implies that any emulation of an N-node mesh by and N-node butterfly must have slowdown
at least O(log N). However, in this chapter we show that an N-node butterfly can emulate
T-steps of an N-node mesh in O(T'loglog N) steps. In [40] we present 2 more sophisticated
emulation scheme that requires only O(T) steps.

In order to understand how such a contradictory result is possible, we need to take a closer
look at what it means to emulate T steps of one network in T steps on another. We start
by modeling the computation performed by the guest network G as a pebble DAG I, In
particular, we will have a pebble for every node-time pair (v,t) where v is a node of G and
0 <t £ 1. (Pairs of the form (v,0) correspond to inputs.) In fact, we may have many pebbles
associated with a single pair (v,t), which will correspond to the same computation being done
more than once. (This is the trick that allows us to emulate a mesk on x butterfly in real
time.) To compute any pebble labeled (v,t), we need as inputs pebbles labeled (v,¢ —1) and
(vy,t =1),(va,2-1),...,(v,t — 1), where vy, v3,..., v are the neighbors of v in G. We use the
directed edges of T to denote this dependence in the usual way.

Because many pebbles can have the same label, there are many DAGs I associated with any

graph G. In order to emulate G on I, we only need to find an embedding and an acccmpanying

118 CHAPTER 3. WORK-PRESERVING EMULATIONS

schedule of one of these DAGs in /1. Once an embedding and schedule of a DAG is fixed, the
emulation proceeds in a standard way. In particular, during each step of the computation, a
node of # can

1. make a copy of a single pebble that it contains,
2, send a single pebble to a neighbor, and /for

3. create a pebble with label (v,) provided thatit already contains input pebbles with Iabels
(v,t = 1) and (v, =1),(e2,0 = 1)oue (vhe = 1).

Initially, we will allow a node of M to have access to any input, although to use any of
these inputs in a meaningful way will take time. By the end of the emulation, we must have
computed pehbles with all labels of the form (v,Tg). (For purposes of simplicity, we will use a
pebble to denote the state of a processor of G at some particular time, a3 described above, A
more general interpretation would be to use a pebble to denote one of many items (e.g., data
and/or functions) stored within a processor. All of our results hold under the more general
interpretation, although some of the emulation results become more complicated.)

By allowing several pebbles to have the same label, we dramatically increase the number
of possible computation DAGs I that correspond to a Tg-step computation of G. This makes
it more likely that we can find a computation that can be efficiently emulated on some host
network If {e.g., as is the case with emulating a mesh on a butterfly), but it also makes the task
of proving lower bounds much more diflicult. For example, in order to prove that i cannot
cmulate G in real-time, we must show that for some Tg, there is no DAG T associated with a
Te-step computation of G that can be emulated in O(T¢) steps on JI. This can be a formidable
task since I' can look very different than G. Indeed, at the very least, we must choose Tg to
be large since by allowing redundant computations of pebbles, any O(1) steps of any N-node
bounded-degree graph G can be computed in O(1) steps on any N-node graph M. (This is
because if T = O(1), then any output pebble can only depend on O(1) input pebbles, which
can be redundantly computed locally since every node of J is assumed to have access to all
input pebbles.)

Note that when we prove a lower bound on the ability of a graph H to emulate a graph

G, it does not necessarily mean that H cannot effectively compute the same result as does G

3.1. INTRODUCTION 119

(possibly by using a different algorithm, for example). Rather, we are proving lower bounds
on the ability of Jf 1o perform the same step-by-step computations as G when G is ysed in
a general purpose way, Hence the term emulation. We suspect that our pebbling model is
probably the most general model in which we could hope to prove lower bounds.

Throughout the chapter we will make use of the fact that if there is an embedding of G
in JI with congestion ¢, dilation d, and load {, then there is an emulation of G by H with
slowdown O(l 4 ¢ + d). The follows from the proof in Section 1.2 that for any set of packets
whose paths have congestion c and dilation d, there is a schedule of length O(c + d) in which
at most one packet traverses each edge at each step. When I is an areay, tree, butterfly, or
shuffle-exchange graph, the schedule can be computed on-line using the algorithm for layeted

networks from Section 1.3.

3.1.3 Our results

The technical portion of this chapter is divided into five sections. \We commence in Section 3.2
with some general techniques for establishing the existence or nonexistence of a work-preserving
emulation. In particular, we describe two general methods for proving lower bounds on the
slowdown of a work-preserving emulation, The first method i based on dilation considerations
and appears in Section 3.2.1. As an application of this method, we prove that any class of low
diamater networks (such as complete binary trees) cannot be emulated in real time on any class
of networks that has poor expansion properties (such as arrays of bounded dimension).

The sccond method is based on congestion propertics and is presented in Section 3.2.2.
Here we describe a general method for proving that a work-preserving emulation requires a
large amount of time, or that it is impossible altogether. As an example, we prove that any
work-preserving emulation of a butterfly on an array of bounded-dimension requires exponential
time, and that it is not possible to emulate an expander on a butterfly in work-preserving
fashion. These results provide a curious con’rast between the power of a linear array, butterfly,
and an expander. By most standards, it would seem that a butterfly is closer in power to an
expander than it is to a linear array. Yet a linear array can emulate a butterfly in a work-
preserving fashion, but a butterfly (or most any non-expander) cannot emulate an expander in

a work-preserving fashion.

120 CHAPTER 3. WORK-PRESERVING EMULATIONS

In Sections 3.3 tarough 3.6, we focus on the special case of emulations by arrays, complete
“inary trees, butterities, and shufMe.exchange geaphs, respectively. In Section 3.3, we prove
tight be :ads un the slowdown required for an array to emulate a Lees, array or butterfly. in
Section 3.4, we prove that there is a work-preserving emulation of bounded-degree trees by
complete binary trees with O(loglog ¥) slowdaven. We also give evidence, but ne proof, that
there is no corresponding real.time emulation for this class. (Proving that a complete binary
tree cannot emulate a complete ternary tree in real-time is one of several challenging questions

left open in this chapter.)

In Scction 3.5, we show that ar N-node butterfly can cmnulate an N-node mesh with slow-
down O(loglog N}. In [40] we show that the emwulation can be performed in real-time. This
result is interesting because any one-to-one embedding of an array {with dimension 2 or more)
in a butterfly requires Q(log A') dilation [11), which suggests that any emulation must require
siowdown Qlog V). The result takes on added significance given the fact that many parallel

numerical algorithms are array-based while several parullel machines .arc buiterfly-based.

We also describe a simple constant.congestion embedding of an N-node shuffle-exchange
graph in an N-node butterfly in Section 3.5. This result has several important consequences.
First, it can be used to provide an clementary proof that the N-node shuffle.exchange graph can
be laid out in D(N?/log? N) area and in O(N¥/2/10g%/? N) volume. Both results are optimal,
The area bound was known previously [38], but the proof was much more difficult (as were
the proofs for several suboptimal layouts for the shuffle-exchange graph [34, 48, 50, 90]). The
3.d layout bound is new and was not obtainable by any of the previous approaches to the 2.d
layout problem. Second, we apply the result to derive an O(log N)-slowdown work-preserving

emulation of the shuffle-exchange graph on the butterfly.

In Section 3.6, we prove the reverse, namely, that there is an O(log N)-slowdown work-
preserving emulation of the butterfly on the shuflle-exchange graph. Taken together, these
results come very close to resolving a long open question concerning whether or not the butterfly
and shuffle-exchange graph are computationally equivalent. In particular, we show that up to
NC emulations, the butterfly and shuffle-exchange graphs are equivalent in a work-preserving

sense. Thus, for many problems, they can be considered to be computationally equivalent.

As a consequence of the emulations in Section 3.6, we also obtain a real-time emulation

3.2, LOWER BOUNDS 121

of bounded-degree arrays in the shuffle-exchange graph, and we show how to sort N numbers
with high probability in U(log N) steps on an N-node shuffie-exchange graph, Although the
proof of the sorting bound is elementary, it resolves an open quastion concerning the difficulty
of randomized sorting algorithms on the shuffle-cxchange graph. Previously, such an algorithm
was known for the butterfly (53, 76, 84] but that algorithin made crucial use of the recursive

structure of the butterfly, a structure not present in a shuffle-exchange graph.

3.1.4 Previous work

There has heen a great deal of previous work on graph embeddings with the intent of showing
that one network can or can’t emulate another network efficiently {11, 12, 13, 28, 53, 80]. Many
of the results were positive and proved things like “all N'-node binary trees can be emulated in
constant time on an N-node hypercube.,” There were also some negative results, but because
of the lack of a good modei, their significance is now less clear. For example, even though an
embedding of a mesh into a butterfly requires dilation Q(log N), we now find that a butterfly
can emulate a mesh with constant slowdown,

The notion of work-preserving emulations in PRAM models has previcusly been studied
(42, 67) and served to motivate this work. Related problems of scheduling computations on

fixed-connection networks have also been studied [72).

3.2 Lower bounds

In this section we present lower bounds on slowdown and inefficiency. Loosely speaking, these
lower bounds apply when the guest graph expands faster than the host graph. The first lower
bound can be used to show that any emulation of a complete binary tree by a linear array has
slowdown Q(Ny;/log Ny). The second can be used to show that a butterfly cannot perform
a work-preserving emulation of an expander graph, that any work-preserving emulation of a
butterfly by a linear array H requires slowdown at least 2%(N%), and that any work-preserving
emulation of a k 4 1-dimensional mesh by a k-dimensional mesh J requires slowdown at least
QN ,l,/ %). All of these lower bounds on slowdown are tight.

Before proving the lower bounds, we need to introduce some notation. For an undirected

122 CHAPTER 3. WORK-PRESERVING EMULATIONS

graph G = (V, E), let §(u,v) be the Jength (number of edges) of the shortest path between
nodes u and vin G, Let Bg(u,i) = {v € V|§(u,v) < i} be the set of nodes within a distance i
of uin G and let bg(u,i) = |Bg(u,i)]. We call bg the growth function of G,

3.2.1 Distance-based lower bound

The following theorem shows that if the guest graph grows faster than the host graph, then

any emulation of the guest by the host must be slow.

Theorem 52 Let M = (Vy, Ey) d¢ an Ny-node host graph and G = (Vg, E¢) be an Ng-node
quest graph, and suppose that there are integers vy and 16 such that

™ 3
:2% gaﬂ(uv') < :2!}}7 gbc(";l)-
Then any emulation of Tg > 1¢ steps of G by M has slowdown

S > (rn +1)/2rg.

Proof: The basic idea is to find a sequence of Tg/7c pebbles in any Tg-step pebble DAG of G
such that each pair of pebbles is separated by at most 7g guest time steps but are created in Jf
at least 1y host time steps apart. As we shall see, such a sequence exists only if the slowdown
S =Ty [Tc is at least (v + 1)/27¢.

\We start the sequence with the last pabble created by M. Suppose that at time Ty some
node up € Vyy creates a pebble for DAG node (v, f0), where ¢5 = Tg. The pebble for (vo, lo)
cannot be-created by J until pehbles for all of its predecessors in the DAG are created. In
particular, there are at least 377, bg(vo, 7) precedessors for time steps to—7¢ through fo—1. We
want to show that the pebble for at least one of these predecessors must have been created by
the host graph before time Ty — 7. The pebble for every predecessor of (g, 1p) that is created
at distance i from ug in JI must be created at or before time Ty —i. Thus at most 3%, by (uo, f)
pebbles for predecessors of (vg, #o) are created by JI between time steps Ty — 7y and Ty — 1.
Since maxyev,; 72 by (u,¢) < minyevg 7S, be(v, j), the pebble for some predecessor (v1, 1),

l; 2 Tg — 76, must be created by the host graph at or before time Ty — (77 + 1).

3.2, LOWER BOUNDS 123

We can repeat the argument to find a pebble for a predecessor (2, #2), t2 2 Te — 21g, of
(vy,4;) that must be created by the host at or before time Ty = 2(7y7 + 1), and 5o on. Eventually
we obtain a pebble (vy, ti) such that rg > ti 2 T — krg. This pebble must be created by the
host at or before time Ty — k(1 +1). We assume that input pebbles are created at host time
step 0, and that the emulation begins with time step 1. Thus, Ty — k(r + 1) 2 0. Combining
these inequalities, we have

TulTe > (tu + 1)/216

for Tg 2 1G. a

Corollary 53 Any such emulation has inefficiency

™mNu
I>Q (rc NG) .

Corollary 84 Any emulation of a complete dinary tree, G, by a k-dimensional mesh, H, has
slowdown at least Q ((Na/ log* N)V ("“)) .

Proof: Apply Theorem 52 with 7g = ©(log Ng), and 1y = © ((No log Na)‘/(**")). 0O

3.2.2 Congestion-based lower bound

The second lower bound requizes a little more notation. Let G = (V, E) be an undirected graph
as before. For a set U C V, we define the i-neighborhood of U to be the set of nodes within a
distance i of some node in I/, V;(U) = UuevRe(u,i)-U. We define an (R, f(R))-decomposition
of G to be a partition of ¥ *uto |V|/R scts of nodes (regions) such that cach contains R nodes
and has a l-neighborhood of size at most f(R).

The last graph parameter that we need, zg, is best described in terms of a simple game.
The player starts by choosing a nodes of a connected graph G and placing them in a bag. The
player is given a collection of ea, 0 < € < 1, tokens to play with. The game is played in rounds,
cach consisting of two steps. In the first step, all of the neighbors of the nodes in the bag are
added to the bag. In t*e second step, the player may exchange tokens for nodes in the bag on
a one-for-one basis. Let X; be the set of nodes in the bag at the end of round i, and let ¥; be
the set of nodes removed in the second step of round i. Then X; is giver by the recurrence

X; = X;1 + Mi(Xi;-1) - Y;. The game ends when the number of nodes in the bag exceeds

124 CHAPTER 3. WORK-PRESERVING EMULATIONS

it capacity, ¢, at the end of a step, where ¢ € Ng. If k is the number of rounds played, then
[Nil € efori <k, |Xi| > cfori=k and X, Vi € a. The goal is to play as many rounds
as possible. Let zg(a,£,c) be an uppor hound that is non-increasing in a on the length of the

longest possible game.

Theorem 85 Suppose that H = (Vy,Ey) is an Ny-node host graph with an (R, f(R))-
dccomposition, and that G = (Vg, Eg) is an Ng-node guest graph. Let
_ . (Ne 31\’0)] (SNGR 1 Na)}
ﬁ—“\“{-c(4 y0, 1 1<G 8Ny '2' 2 .
Then for any emulation vf G by H where Tg > 31,

. R Ny
I 2 min {WI(—R)-‘ m} .

Proof: The basic strategy is to show that cither the host spends a lot of time passing pebbles
across the perimeters of the regions in the (R, f(R))-decomposition, or the host spends a lot
of time creating pebbles. We will break the T guest time steps into blocks of 33 consecutive
steps and classify every block as eitiier an importer or a creator. If a block is an importer, then
many pebbles for the block cross reg:on perimeters. If a block is a creator, then some region
creates many pebbles for the block, If the majority of the blocks are importers, then the time
required by the host to pass pebbles acroes the perimeters of the regions large. Otherwise, the
time required to create the pebbles is large.

Before we can get started we need one more piece of notation. Far each node v in G there is
at lcast one pebble created by Jf for cach guest time step 1 between 1 and T, The first pebble
created for v for time ¢ is called the {-primary pebble for v. For each value of ¢ there are exactly
Ng t-primary pebbles. The t-primary pebbles are ordered according to the order in which they
are created by J, with ties broken arbitrarily. We call the first 3N /4 t-primary pebbles the
t-carly pebbles and the last 3Ng/4 the t-late pebbles.

We begin with the definition an importer block. Consider a block from step t to 1 - 38+ 1.
The average number of t-early pebbles created by each of the Ny /R regions in the decomposition

of H is at least p = 3NgR/4Ny. We say that a region is t-busy if it creates at least p/2 t-early

3.2, LOWER BOUNDS 125

pebbles. We say that a t-carly pebble is t-busy if it is created by a t-busy region. At least
half of the {-early pebbles are t-busy. Thus, there are at least 3Ng/8 t-busy pebbles. Suppose
that a t-busy region creates s > p/2 t-busy pebbles. We say that the region is an importer if
it imports at least s/2 pebbles for time steps between ¢ — 1 and ¢ — 20. We say that a block
is an importer if every t-busy region is an importer, or if some region imports at least ING/16
pebbles for time steps between ¢ — 1 and t = 28. In a importer block, a total of at least INg/16
pebbles for time steps between ¢ — 1 and ¢ — 28 are imported by all of the regions.

If at least half of the Tg/38 blocks are importers, then we can find x lower bound on
inefficiency by computing the time required to import pebbles. In this case, the total number
of pebbles imported by all of the importer blocks is al least TgNG/320. The host time required
to import these pebbles is at least Ty > ToNgR/328Ny; f(R), because at each host time step,
cach of the Ny /R regions can import at most f(R} pebbles. In this case,

I'2 R/328/(R).

As we shall see, if a block is not un importer then some region must create many pebbles for
the block. Hence the name creator. In a creator block thera must be some {-busy region R that
creates s 2 p/2 t-busy pebbles but im; orts fewer than s/2 pebbles for time steps between ¢ -1
and ¢ — 28. The {-busy pebbles created by R cannot be created until pebbles for all of their
predecessors in the pebble DAG are created. Since zg(s,1/2, Ng/2) £ z2¢(p/2,1/2,Nc/2) £ B,
R imports at most s/2 pebbles for time steps between ¢ — 1 and ¢ — z¢(s,1/2,Ng/2). Thus
R must create at least Ng/2 pebbles for time step ¢ — zq(s, 1/2, Ng/2). Furthermore, since R
imports at most 3Ng/16 pebbles for time steps between ¢ -1 and ¢ - 24, it must create at least
5N¢/16 pebbles for every time step between & — zg($,1/2, Ng/2) and ¢ —28. For each of these
time steps, at least Ng/16 of the pebbles are created for nodes whose (¢ — 2f3)-primary pebbles
are (1 — 2f3)-late pebbles. We call these pebbles the descendant pebbles.

We have chosen the descendant pebbles so that none are created by / until all of the
descendant pebbles for previous blocks Lave been created. The early pebbles for all time steps
at or before t—26—-26(Ng/4,0,3N¢ /4) must be created before the (t—28)-late pebbles because
3Ng/4 nodes in G lie within a distance 2g(Ng/4,0,3Ng/4) of the nodes corresponding to the
first Ng/4 (t — 20)-primary pebbles. Since 26(Ng/4,0,3Ng/4) < B, the car'y pebbles for
previous blocks must be created before the (t —28)-late pebbles. Furthermore, the (¢ —28)-late

126 CHAPTER 3. WORK-PRESERVING EMULATIONS

pebbles must be created before the descendant pebbles, which in turn must be created before
the t-busy pebbles for R.

If at least half of the blocks are creators, then we can derive a lower bound on inefficiency
by summing the time to create the descendant pebbles for cach of the creator blocks. For each
of T /68 creator blocks, at least ANG/16 descendant pebbles are created by a single region.
The host time for each block is at least SNG/16R. The host time for all of the creator blocks
is at least TN /96 R and the inefficiency is at least

I'> Nju/9%GR.

Combining the two cases proves the theorem. a

Corollary 568 A k-dimensional mesh H cannot perforin a work-preserving emulation of an

cxpander graph G.

Proof: Apply Theorem 55 with & = O((Nyr log Ny)¥/(++1)), f(R) = O(R*-1/*), and f =
O(log(N s/ R)). 'The inefficiency is at least I > Q((Nyy/log* Ny)t/ (k+), @]

Corollary 57 A butlerfly network Il cannol perform a work-preserving emulation of an ez-

pander graph G.

Proof: Apply Theorem 55 with R = O(Ny loglog Ny /log Ny), f(R) = O(R/log R), and
f = O(log(N2/R)). The inefficiency is at least I > Q(log Nyy/ loglog Ny). o

Corollary 58 Any work-preserving emulation of a butterfly G by a k-dimensional mesh H has

slowdown at least 20NK™),

Proof: Apply Theorem 55 with R = O((Ny log Ng) /1), f(R) = O(R*-N/k), and § =
O(log Ng). The inefficiency is at least I > Q((Nyr/log® Ng)/(k+1)), 0

Corollary 58 Any work-preserving emulation of a j-dimensional mesh G by a k-dimensional
mesh H, j > k, has slowdown at least Q(N,(}"k)/ k).

Proof: Apply Theorem 55 with R = O((NLNy)H*+)), f(R) = O(R*-D/%), and B =
O(NZ). The inefficiency is at least I > Q((Ni;/Nk)/itk+1)), 0

3.3. EMULATIONS BY ARRAYS 127
3.3 Emulations by arrays

Although the arrays cannot perform real-time emulations of graphs with small diameter, w2
can show that they can perform work-preserving emulations of complete binary trees, other
arrays, and butterflies. In cach case, we find an embedding of the guest graph into the array
with acceptable load, congestion, and dilation, The edges of the guest graph are emulated by
routing packets between the nodes of the linear array. All of the following results can be shown
1o be tight by Corollaries 54, 58, and 59.

Observation 80 An V.node k-dimensional mesh can perform a work-preserving emulation of

an N0/ 1og N-node complete binary trec.

Proof: An N(+0/K)/log Nonode complete binary tree can be embedded jn an N-node
k-dimensional mesh with load O(NV¥*/log N), dilation Q(NV/*/log N), and congestion
O(N k1)), 0

Observation 81 An N-node k-dimensional mesh can performn a work-preserving emulation of

an Ni/*k.node j-dimensional mesh, j > k.

Proof: An Ni/k.pode j-dimensional inesh can be embedded in an N-node k-dimensional mesh
with load NU=K)/k_ congestion NU-¥¥k and dilation 1. 0

Observation 82 An Ny = n*-node k-dimensional mesh H can perform a work-prescrving

emulation of an Ng = n2"-node bullerfly graph G.

Proof: An n2".node butterfly graph with 2" rows and n columns can be embedded in a
Ny = n*-node k-dimensional mesh with load 0(2"/n*-1), congestion 0(2"/n*-1), and dilation
O(n). O

It is interesting to note that every connected network can perform a real-time emulation of
a linear array. Hence, Observations G0 through 62 can be modified to hold for all connected

networks.

128 CHAPTER 3. WORK-PRESERVING EMULATIONS

3.4 Emulations by complete binary trees

3.4.1 Work-preserving emulations of bounded-degree trees

In this section, we show that any A loglog N-node forest with maximum degree A can be embed.
ded in an N-node complete binary tree with load O(Aloglog N'), congestion O(A? loglog N),
and dilation O(logA). As a corollary, there is a work-preserving emulation with slowdown
O(loglog N) of the class of boundetl-degree forests by the class of complete-binary trecs.

In constructing the embedding, we use the following well-known weighted-separator lemma

and its corollaries.

Lemima 63 Suppose that F = (V,E) is a forest where cach verfex has been assigned some
non-ncgative weighl. Then it is possible to remove a single veriex from V so that the remaining
verlices can be partitioned into two subforests Fy and F3 such that no edge conniects a vertez in

Fy with a vertez in Fy, and Fy and F3 cach contain at most 2/3 of the lotal weight.
Proof: Omitted.

Corollary 84 By removing a single vertez, it is possible to partition a forest F = (V,E) into

two subforests cach containing at most 2|V|/3 vertices.

Proof: Assign cach vertex weight 1 and apply Lemma 63. 8]

Corollary 85 By removing a sel S of k vertices, it is possible to parlition a forest F = (V, E)
into two subforests, iy and F, cach containing at most |V|(1 4+ (2/3)%)/2 vertices.

Proof: Initially Fy and F; are empty and a third set R contains all of the vertices. Iterate
the following step k times. Apply Corollary 64 to split R into two subforests, then remove the
smaller subforest from R and add it to the smaller of Fj and F,. At the end of each step, Fy
and F; differ in size by at most |R|. After k iterations, 2 contains at most [V|(2/3)* vertices.
Add R to the smaller of the two sets. ()

Corollary 66 Suppose that F = (V, E) is a forest where each verter has been assigned some

non-negative weight. Then it is possible remove a set § of k vertices such from V such that the

3.4. EMULATIONS BY COMPLETE BINARY TREES 129

retnaining verlices can be partitioned into two subforesis Fy and Fy such that no edge connects
a verlez in Fy with a verfez in Fy, and cach conlains at most [V|(1 + (2/3)*=1)/2)/2 vertices
and al most 5/6 of the total weight,

Proof: First apply Lemma 63 to partition the forest into two subforests L and R, each con-
taining at most 2/3 of the weight. Next, apply Corollary 65 to split L into L, and Lj, and R
into Ry and Ry, Let Ly and R; have more weight than L2 and R; respectively. Then both I
and R; have at most 2/3 of the weight, and Lz and Rz have at most 1/6. Let R = LU R,
and F = LLUR,. 0

With these tools in hand, we present the embedding.

Theorem 87 An Nloglog N-node forest with maximum degree A can be embedded in an N-
node complete binary tree wiih load | = O(Aloglog N), congestion ¢ = O(A?loglog N), and
dilation d = O(log A).

.

Proof: The embedding begins by using Corollary 66 to find a set S of k € O(loglog N') nodes
that partitions the forest F = (V,E) into two subforests, each containing at most |V|(1 +
1/log N)/2 vertices. We embed § at the root of the binary tree and then recursively embed
one of the subforests in the left subtree of the root, and the other in the right.

At levels below the root, we use Corollary 66 to simultaneously partition the vertices of the
forest and the edges connecting the forest to vertices that are embedded higher in the binary
tree. Let F; = (V;, E;) be a forest to be embedded in a subtree rooted at a level i node v; in the
binary tree. Let N; be the number of edges connecting F; to vertices embedded higher in the
binary tree; N; is the congestion of the binary tree edge connecting v; to its parent. We assign
cach vertex of F; a weight equal to the number of neighbors it has that are embedded higher
in the binary tree. Using Corollary 66, we find a set S; of k vertices that partitions F; into two
subforests, each of size at most |V;|(1+ 1/log N)/2, and cach having at most (5/6)N 2dges to
vertices that are embedded higher in the tree. We embed the vertices of S; at v; and recursively
embed one of the subforests in the left subtree of v;, and the other in the right subtree.

To limit the dilation to some integer d, whenever i is a multiple of d we embed at v; not
only 5; but also all of the vertices in F; that have at least one neighbor embedded somewhere

higher in the binary tree.

130 CHAPTER 3. WORK-PRESERVING EMULATIONS

We must now show lhiow to choose d so that hoth the congestion and the load of the embed-
ding are small. Consider any simple path from a level i node vy in the binary tree to a level i+d
node, vi44, where i is a multiple of d. At level i, we embed a separator of size k and at most N;
other vertices that have at least one neighbor embedded higher in the tree. Since each of these
vertices has at most A neighbors, Niyy < Ak 4 AN;. Atlevel i 4 1, we embed a separator of
size k that partitions Fiyy into two subforests, each kaving at most (5/6) Ny edges to vertices
cmbedded higher in the binary tree. Thus, at level i 42, we have Niga £ (5/6)Nigy + Ak. In

general, Ni4; is given by the recurrence
Ak+AN; =1
i S)
(5/6)Nigj1 + Ak 1<j<d

Solving the recurrence yields
Niys S 6Ak + (5/6Y'AN;,

We are now in a position to calculate the load and the congestion. The preceding argument
shows that for d € O(log A) and N; € O(Ak), we have Niyg < Ni. Thus, in every simple
path between a node at level i and a node at level i 4 d, where i is a multiple of A, the
congestion starts at O(Ak) at level ¢, rises to at most O(A2k) at level i 4 1 and proceeds to
drop back down to at most O(Ak) at level i + d. Thus, the congestion of the embedding is at
most O(A%loglog N). How large can the load be? At each node of the binary tree we embed
a separator of size k. For every i that is a multiple of d, we also embed a set nodes of size
N; = O(Ak). Finally, at thz leaves we embed forests of size

Nloglog N((1+ 1/log N)/2)s¥,
which is at most O(loglog N). Thus the load is at most O(A loglog N). a

Corollary 68 There is a work-preserving emulation of the class of bounded-degree forests by
the class of complete-binary trees with slowdown O(loglog N).
3.4.2 Congestion lower bound for complete ternary trees

In this section we show that any embedding of an N-leaf complete ternary tree T3 in an M-leaf

complete binary tree To, N < M < 3N, in which the leaves of T; are mapped to the leaves of

J4. EMULATIONS BY COMPLETE BINARY TREES 131

T4 with load at most 28" ¥ fixed a < 1, has congestion at least Q(vToglog V). This lower
bound suggests, but does not prove, that real-time emulation of a complete ternary tree by a

complete binary tree is impossible.

Theorem 89 Any cmnbedding of an N-leaf complete ternary tree Ty in an M-leaf complete
binary tree Ty, N < M < 3N, in which the leaves of Ty arc mapped to the leaves of Ty with
load 1 = 296" N fired o < 1, has congeation at least 0 \/TogTog I¥).

Proof: The proof has the following outline. Let L denote the number of leaves of T3 in a
subset S of the nodes of Ty, and let w be a base-3 string representing L. First we show that
for any S, the number of 1's in w is at most one plus the number of edges between § and 3.
As a consequence, il S is the set of nodes mapped to a subtree rooted at a node vin Ty, then
the congestion on the edge from the v to its parent is at least as large as the number of 1's in
w. Next, we construct a path vo,v,..., g ar in T from the root vy 10 a leal tygar such that
there is a long sequence of nodes on the path, vj, vj41,..0,Vj4s-1 such that for each v;, where
j L1 <7+ s~1, the number of leaves of T3 mapped to the left and right subtrees of v; are
nearly equal. Let S; be the set of nodes of Ty mapped to the subtree rooted at v;, let f; be the
number of leaves of T3 in §;, and let w; be the base.3 string representing L;. To complete the
proof we show that for some i, where j < i < 5+ —1, there are many 1's in w;.

First we show that for any subset S of the nodes of T, the number of 1's in w is at most
|Es| + 1, where Es is the set of edges in T3 connecting a node in S to a node in 3. The key
idea is that L can be expressed as a series of |[Eg| + 1 terms, both positive and negative, where
cach term is a perfect power of 3. If the root of 15 belongs to S, then the series begins with
the term N; otherwise it begins with 0. Thereafter, each edge in Es contributes a term to the
series. An edge between a node u on level [and its parent on level I - 1 contributes N/3! if uis
in §, and —N/3! otherwise. Because adding or subtracting a power of 3 can produce at most
one 1 digit in a base-3 number, the number of 1’s w is at most |E(S)| + 1.

Starting at the root, 1o, we construct the path in I3 according to the following rule. Suppose
that v; is a node on the path. Then the next node on the path, vi4; is the root of the left o1
right subtree of »; containing more leaves of T3. Let L; be the number of leaves of T3 mapped

to the subtree rooted at v;. Then v;4, contains at least L;/2 leaves of T3. We call the split at

132 CHAPTER 3. \YORK-PRESERVING EMULATIONS

v; fair if both of its subtrees contain at most L;(1/2 4 €) leaves of T3, where £ will ba specified
later.

Next we put a lower bound on the length of the longest sequence of consecutive fair splits.
Let & be the number of unfair splits on the path. The number of leaves of T3 mapped to the
leaf at the end of the path is at least

)
Since the load is at most J,and 1 +x < ¢*/2for0 < x £ 1, we have [> ic“. Let & be the
length of the longest sequence of consecutive fair splits. ‘Then s 2 log A/b > clog M/1n 3.

We now show that in the longest sequence of consecutive fair splits vj, Uigyyeu ey Uigrat,
there must be a node v, where 1 €1 € j+ s~ L such that there ave many 1% in w;. For the
moment, let us assuine that at each node v; on the sequence, the number of leaves of Ty mapped
to each subtree of v; is exactly 7¢/2. Then we can prove that at some node v; on the sequence,
the number of 1's in the ¢ most significant digits of w; is at least V7, where t = (logy 2)s.
Suppose that the the number of 1's in w; is smalier than V1 (otherwise we're done). The 1's
in w; partition it into substrings sonsisting of 0's and 2's only. In each substring, division by 2
cither converts all of the 0's to 1's (leaving the 2's unchanged), or converts all of the 2's to 1's
(leaving tie 0's unchanged). Thus, after division by 2, 0's and 2's are adjacent in at most /I
places in wjgy. Thus, there must be a substring of either V1 0% or VI 2's in wjsg. In either
case, after at most s divisions by 2 the substring is converted to all 1's.

Unfortunately, a fair split at a node v; does not divide I; exactly by 2; it also adds as much
as eL;. For e < 1/3, adding ¢; does not change the t most significant bits unless a carry
propagates in. We need to show that our substring of /1 0's or 2’s is not adversely affected
by carries. Since a carry into a substring of 2's turns them all into 0's, we need only consider
the effect of a carry into a substring of 0’'s. A carry into a substring of 0's converts the least
significant 0 in the substring into a 1, which is bad, because it reduces the length of the string.
However, 3V¥/2 carries are required to modify the v2/2 least significant 0's in the substring.
Since at most one carry occurs at each of the s splits, and s < Vi the length of the longest
string of 0's never drops below v1/2.

To finish, we choose values for ¢, I, and &. To make the lower b .ad st;ong, we want to

make ¢ large without making ! too small. For any fixed a < 1, we can choose [= Qlog* N,

3.5. EMULATIONS BY BUTTERFLY NETWORKS 133

¢ = O(loglog N). and £ = 1/3%. The congestion is at least V1/2 = Q(VIoglog N). O

3.5 Emulations by butterfly networks

3.5.1 Work-preserving emulations of binary trees

When the Bhatt, Chung, Hong, Leighton, Rosenberg result [11) that a butterfly can emulate &
complete binary tree in real-time is combined with the material in Section 3.4, we find that there
is an O(loglog N)-time work-preserving simulation of the class of binary trees on the butterfly.

Whether or not this emulation can be performed in real-time remains an open question.

3.5.2 Emulation of meshes

In this section we show that an O(N')-node butterfly can emulate an N-node mesh with slow-
down O(loglog N).

Theorem 70 An O(N)-node butterfly can cmulate T' steps of a VN x VN mesh in
O(T'loglog N) steps.

Proof: The trick is to divide the mesh into slightly overlapping submeshes, as shown in Figure 3.
1. Each log? N xlog? N submesh overlaps its neighbors in cither 2log N rows or 2log N tolumns.
Since the submeshes overlap, some mesh nodes appear in as many as four submeshes. We call
two nodes in neighboring submeshes mates if they correspond to the same mesh node. Each
submesh is emulated by a different O(log* N)-node subbutterfly. Siace a single mesh node may
be emulated by several subbutterflies, the butterfly performs redundant computation.

A subbutterfly emulates the corresponding submesh by routing packets between each mesh
node and its neighbors. Since, an O(log* N)-node subbutterfly can route any permutation
of O(log* N') packets in O(loglog N') steps, the time to emulate each step of the submesh is
O(loglog N').

The nodes on the borders of a submesh cannot be emulated by the corresponding subbut-
terfly because they require inputs from mesh neighbors that the subbutterfly does not emulate.
As a consequence, nodes at distance § from the border can be emulated for only § steps. For-

tunately, every node at distance § < log N from the border of one submesh has 2 mate at

134 CHAPTER 3. \WORK.PRESERVING EMULATIONS

-

2 o J
log ‘N 2log N

Figure 3-1: The division of the mesh into submeshes. Each log? N % log? N submesh overlaps
its neighbors in cither 2log N rows or 2Jog columns.

a distance of 2log N — § 2 log N in a neighboring submesh. Thus,'c\'ery mesh node can b

cmulated for the full log N steps in some subbutterfly.

To emulate I' > log N steps of the mesh, the T steps are broken inwo blocks of log N
consecutive steps. The time to emulate a block of log A steps is O{log N loglog N'). Defore the
next bleck can be emulated, the nodes within distan.z log N of the borders of the zubmeshes
must be updated by their mates. Since an N-node butterfly can route any permutation of
N-packets in O(log N) steps, the updating takes O(log N) time. The total time for T' steps is
O(Tloglog N). 0

This emulation scheme has two main drawbacks. First, the packets that are sent between
blocks to update the mates must cach carry enough information to reflect the change in the
state of a mesh node over a period of log N eteps. Such packets are unreasonably large. This
problem can be overcoma by observing that only O(N/log N) of the mesh nodes must be
updated. If these nodes are carefully positioned within their subbutterflies, it is possible to
route log N packets to cach of them in O(log N') steps. Second, the lowdown is too large. The
slowdown can be reduced from O(loglog N) to O(log® N') by ¢ «« cach log? N x log? N

mesh recursively. A more sophisticated scheme for real-time emuia 15 presented in [40).

|

3.5. EMULATIONS BY BUTTERFLY NETWORKS 135

3.5.3 Embedding the shufile-exciiange graph in the butterfly

In this section, we show how to embed an N-node shuflle-exchange graph in an O(N)-node
butterfly graph with constant load, constant congestion, and O{log &) dilation. These graphs
are defined in Sections 1.7 and 1.5, respectively.

A constant congestion embedding requires that very few edges of the shuffle-exchange graph
be mappad to long (more than constant length) paths in the butterfly. In addition, these paths
must not overlap each other very often. To ensure this, we use Waksman's observation {58
that the inputs and outputs of a Benes network can be connected in any permutation by a et
of disjoint paths. That is, if the set of long paths can be decomposed into a constant number
of (partial) permutations of the inputs of the butterfly, the long paths can be embedded with
constant congestion. It is easy to see that we can embed the long paths in this manner whea
there are at most a constant number of endpoints of long paths in any single butterfly row. (We
fiest route a path from each endpoint to the input of its row, which leaves us with a constant
number of permutations to route on the Benes network.)

We map the nodes of a shuffle.-exchange graph to the nodes of a butterfly graph so that

1. at most a constant number of shuffle-exchange nodes are mapped to any one butterfly

node, aha

2. cach butterfly row contains at most a constant number of shuffle-exchange nodes which

have any neighbor mapped to a distant node in the butterfly.

Short paths only contribute constant congestion since they have constant length. Long
paths only contribute constant congestion since we can route any permutation with congestion
2, and we only need to route a constant number of (partial) permutations. Also, the length of
the short paths is constant and the long paths is O(log n).

In particular, we map the nodes of a N = 2".node shuflle-exchange graph to the nodes of a
(n+2-logn)2nt2-16n ~ 4 N.node butterfly graph. Each node in this N-node shuffle-exchange
graph has n bits in its label. A node in the butterfly can be specified by a row represented by
n+2—legn bits, and a level in the row. The level in the row corresponds to a bit that can be
flipped to enter another row. Thus, we first associate a shuflle-exchange node with a particular

row of the butterfly by removing logn — 1 adjacent bits of its label none of which are the least

136 CHAPTER 3. WORK-PRESERVING EMULATIONS

significant bit, then wa pick the level in the row which corresponds to where the least significant
bit of the shuffle.exchange node appears in the row’s representation.

We map a shullle.axchange node w to a node in the butterfly as follows,

1. Consider the longest string of zeros in w ignoring the least significant bit, break ties by

choosing the first once from the left.

2, Pick out log n — 1 bits as follows;

(%} If possible choose the fog n — 1 bits after the zeros and before the Isb,
(b) otherwise if possible choose the logn — 1 bits preceding the longest siring of zeros,

(c) otherwise choose the last logn — 1 bits of the string of zeros (note that in this caze

more than n = 2log n bits are zeros).

3. Treat these bits as a number (it will be in the range 0...2), call this number s, and the

sequence of bits a,.

4. Remove the bits of s from w, extend the chosen string of zeros on the right (left) by a 01
(10) if the bits were removed from the right (left) of the block of zcros, and cyclic shift
the resulting string so that s bits appear after the lzngest string of zcros, this specifies

the row,

Symbolically, we map w = z0*a,yb to row u0*+!1v, or we map w = za,0%yb to row u10*+1y,
with ybz = vu and |v] = s. (Note that we map to a row with a unique longest string of zeros
not straddling the bit which is at the level of the butterfly node.) It is casy to see that the
least significant bit of w, b, is somewhere in the representation of the row. We choose the level
in the row to correspond to the position of b in the row’s representation.

We must argue that the mapping achieves condition 1 and 2 above.

First, we introduce some more notation. We define a necklace to be a set of shuffle-exchange
nodes which are connected only by shuffle edges. Alternatively, a necklace is a set of nodes
having labels which are cyclic shifts of cach other. A necklace’s label is the lexicographically
minimum label of its nodes. We can specify a shuffle-exchange node by the label of its necklace

and the position of the least significant bit of the node’s label in the necklace’s label.

3.5. EMULATIONS BY BUTTERFLY NETWORKS 137

We define the domain of a butterfly node to be the set of shuffle-exchange nodes that are

mapped to it by our mapping.

Now we show that the mapping is at most two to one. That is, given a butterfly node (p, r)
we can describe at most two shuffle.exchange nodes that could possibly be mapped to (p,r)
as follows. Recsll that a butterfly node (p,r) has all the bits of w in r's binary representation
except for a,. And these, we recaver by fiding the length of the string after the longest group of
zeros in: ' binary representation not straddling the pth bit. We kunow that we have to reinsert
them efther directly befors or directly alter that group of zeros. ‘Thiz gives us all the bits of
the domain nodes except for & cyclic shift uncertainty. Thus, sthe domain of {p, i') can only be
nodes from two necklaces. Furthermore, the least significant bit of the nodes! labels is nuiguely
specified by the place where the pth bit of r's binary representation oceurs in the neckiacest
labels, Thus only two shuffle-exchange nodes can be mapped to any node in the butierfiy.

Finally, we argaa that we map at most a constant number of.shuffle exchange nodes with

distant neighbors to any butterfly row,

Notice that we always ighore the value of the least significant bit in the mapping of shuffle-
exchange nodes to butterfly sodes. Thus the mapping maps two shuffle-exchiange nodes to two
nodes that only differ in the bit that can-currently be changed by a butterfly edge. Thus, any
cxchange edge needs only flip the bit at the node's level, whick only requires a path of length

2. Thus all exchange edges are embedded in short paths.

Now consider the shuffle cdges. We show that at most a constant number of shuifle edges
leave any row of the butterfly. (It is casy to sce that all the shuflle edges in a row are mapped
to single edges in the-hucterfly graph.) Again, consider the inverse mapping of a butterfiy-notle,
{p,r), to two shuffle.exchange nodes. The necklaces of the domain nodes of row »'s nodes, it
the same for most of the row. They change only at certain transition levels in the row; levels,
9, in the row where the position of the longest string of zeros not straddling p changes, or levels
in the row where we become unsure or sure of which side of the zeros to replace the removed
bits, a,.

The position of the longest string of zcros not straddling p only changes at two points; inside
the row’s unique longest string of zeros. When the row level is within logn bit positions to the

right of the longest string of zeros, we know that pieces of two shuflle-exchange necklaces could

138 CHAPTER 3. WORK-PRESERVING EMULATIONS

have been mapped to the row. Qutside this range we know that only one necklace is mapped to
the row: Inside the group of zeros the bits were definitely taken out before the group of zeros,
and further to the right they were definitely taken out after the group of zeros. Thus entering
this stretch and leaving this stretch gives us two more bad levels. Thus we have four transition
levels in all, and for cach of these at most four necklaces could enter or leave the row at any
of these levels. Thus at most 16 long shuffle edges can have sndpoints in this row. (Careful
counting can reduce this number to G.)

Thus at most 16 long edges are adjacent to any row of the butterfly. This satisfies condition
2, above.

Thus, the shuflle-exchange graph can be embedded in the butterfly with constant congestion.

3.5.4 Layouts for the shuffle-exchange graph with optimal area and volume

The N-node butterfly can be laid out in O(N?/log® N') area (trivialiy) and in O(N¥/2/1og®/? N)
volume (100]. Since the N-node shuffle-exchange graph can be embedded in the N-node but.
terfly with constant congestion, we can simply blowup these layouts by a constant factor to

obtain layouts for the shuffle-exchange graph with ecaivalent arca and volume.

3.5.5 A wcrk preserving emulation of a shuffle-exchange graph

We construct an O(log N)- step work-preserving simulation of the shuffle-exchange graph on
the butterfly by first embedding the shuffle-exchange graph in an N log N-node butterfiy with
constant congestion, und then embedding the Nlog N-node butterfly in an N-node butterfly
in the natural way. It is not difficult to show that the N-node butterfly can then simulate the
Nlg N-node shaflle-exchange in O(log N) steps. Whether cr not there is a real-time emulation

remains an interesting open question.

3.6 Emulations by shuffle-exchange graphs

3.6.1 Work preserving emulations of arbitrary binary trees

It is well known that the shuffle-exchange graph can emulate a complete binary tree in real

time. Thus by the results of Section 3.4, we know that there is an O(loglog N)-time work-

3.6. EMULATIONS BY SHUFFLE-EXCHANGE GRAPHS 139

preserving enculation of the class of binary trees on the shuffle-exchange graph. Whether or not

this emulation can be made real-time remains an open question.

3.6.2 Embedding little butterflies in the shuffie-exchange graph

In this section we show how to embed M/log M distinct M log Af-node butterfly graphs in an
N = M? shuffle-exchange graph with load [= 2, congestion ¢ = O(1), and dilation d = 3. A
similar result was proved by Raghunathan ani Saran (80). We assume that A = 2%, Thus each
row of the butterfly can he represented by a &-bit string, and cach node of the shuffie-exchange
can be represented by a 2k-bit string.

To map M/log M butterflies to the shuffie-exchange graph, we use the following easily

proven lemma.

Lemma 71 The set of k = log M-bit strings has at lcast M [2log M disjoint subsels cach

containing log M distinct strings which are cyclic shifts of cach other.

For cach of these subsets we pick the lexicographically minimum string to represent the
subsets. We associate the M/log M butterflies two to one with the A/2log M representative
strings. Say butterfly i is associated with string w'. We map a node (p,r) in butterfly i to a
shuffle-exchange node by shuffling the bits of w; with the bits of r's representation, and choosing
the current bit to be under the image of rp. That is, node (p,r) in butterfly i is mapped to
shuffle-exchange node ry w{'...rz,_w;',...r,‘wf‘.

From a shuffle-exchange node we can recover the representative string w; by picking out
every other bit and shifting to the lexicographically minimum string. We find the row string by
picking out the other bits and shifting by the same amount. The position in the row is clearly
the number of shifts we used to get to w; and the row number.

To finish, we observe that each edge in any of the butterflies is mapped to a path of length
at most three in the shuffle-exchange graph since we either shift twice to reach (p+1,r)’s image,
or we exchange the current bit and shift twice to reach (p + 1,r,..%5...rn)’s image.

Thus we can embed VN /logvN (VNlogv/N)-node butterflies in an N-node shuffle.
exchange with load 2, congestion O(1), and dilation 3.

This technique can be extended to prove that for any constant 0 < € < 1, N¢ distinct N!=¢

butterfly graphs can be embedded ir an N-node shuffle-exchange.

140 CHAPTER 3. WORK-PRESERVING EMULATIONS

3.6,3 Application to sorting on a shuffle-exchange graph

It is known that an N-node butterfly can sort N' packets with high probability in O(log N')
steps (53, 76, 84). The result does not directly extend to the shuflle-exchange graph because the
shuflle-exchange graph does not have the nice recursive structure possessed by the butterfly.
llowever, by combining the embedding result of Section 3.6.2, the butterfly sorting algorithm
in (53}, and the columnsort algorithm of [47], we can obtain an algorithm for sorting N packets

on an N-node shuffle.cxchange in O(log N) steps with high probability.

3.6.4 Real time emulations of arrays

By combining a single level of the kind of analysis in Section 3.5.3 with the result of Section 3.6.2,
we can cmulate an array in real time on a shuffle-exchange graph. This is despite the fact that
any O(1) to 1 embedding of an N-node array (with dimension 2 or more) in a shuffle exchange

graph has dilation Q(loglog N) [11). .

3.6.5 A work preserving emulation of the butterfly

By using standard techniques in routing normal hypercube algorithms, it is casily shown that
there is an O(log N)-step work-preserving simulation of a butterfly on a shuffle-exchange graph.

Whether or not there is a real-time simulation remains an important open question.

Chapter 4

Minimum-cost spanning tree

4.1 Introduction

In this chapter we show that minimum-cost spanning tree is a special case of the closed semiring
path-finding problem [}1, sections 5.6-5.9]. For a graph of n vertices, the path-finding problem
can be solved scquentially in O(n3) steps by a dynamic programming algorithm (37, 66) of which
the algorithms of Floyd (25] and Warshall [99] are special cases. This dynamic programming
algorithm has a well known O(n) step implementation on an n X n mesh-connected computer
(6, 19, 22, 30, 86).

Previously known minimum-cost spanning tree algorithms for the mesh [6, 61] are based
on the recursive algorithm of Boruvka (also attributed to Sollin) [91, pp. 71-83], which is
complicated to implement. For example, the algorithm of [6] achieves O(n) steps by reducing
the fraction of the mesh in use by a constant factor at cach recursive call. The dynamic

programming algorithm has the same asymptotic running time but is much simpler.

The rest of this chapter consists of two short sections. In Section 4.2 we show how to cast
minimum-cost spanning tree as a path-finding problem. In Section 4.3, we briefly describe an

O(n) step mesh algorithm to solve the problem.

This chapter describes joint research with Serge Plotkin [65).

141

142 CHAPTER 4. MINIMUM-COST SPANNING TREE

4.2 Reduction to a path-finding problem

In this section we define the minimum.cost spanning tree problem and a related path-finding
problem. We give a recurrence for solving the path-finding problem via dynamic programming,.
We then prove that the solution to the path-finding problem contains the solution to the
minimum-cost spanning tree problem,

Given an n-node connected ! undirected graph G = (V, E), where V is the set {1,...n},

Ji
to find a subgraph that connects the vertices in V¥ such that the sum of the costs of the edges in

and where cach edge {i,) in E has cost C,‘f, = the minimum-cost spanning tree problem is
the subgraph is minimum. We assume that the edge costs are unique. (If not, lexicographical
information ¢an be added to make them unique.) For convenience, we also assume that if {i, 5}
is not in E then it has cost Cf; = Cf; = o0.

The path-finding problem is to compute the cost C,!;- for cach 1 < i,7,k € n of the shortest
{lowest-cost) path from i to j that passes through vertices only in the set (1,...,k}, where the
cost of a path is defined to be the highest cost of any edye on the path. For any i and j, the
shortest path from i to j with no intermediate vertex higher than k either passes through k or
does not. In the first case, the cost of the shortest path from i to j is cither the cost of the
shortest path from i o k or the cost of the shortest path from k to j, whichever is higher. In

the second case, we have C¥ = C5™1. Thus, C¥ can be computed by the recurrence

C = min{C¥™!, max{Ck™,CK "))

The following theorem shows that the unique minimum.cost spanning tree can be recovered

from the costs of the shortest paths.

Theorem 72 An edge {i,5} is in the unique minimum-cost spanning tree if and only if C =

C'.';-.

Proof: The proof has two parts. We first show that if {i,;} is a tree edge then C = C%. We
then show that if C?.,- = CJ; then the edge {i,7} is in the tree. First, assume that {5} is a

tree edge, but that CY; # CF. Consider the cut of the graph that {i,5} crosses, but no other

!For simplicity, we assume that the graph is connected. The same technique will find a minimum-cost spanning
forest of a disconnected graph.

4.3. IMPLEMENTATION ON A MESH-CONNECGTED COMPUTER 143

tree edge crosses. Since CY # Cf, there must be some path from 1 to j whose highest-cost
edge has cost Cf} < Cf). Hence, every edge on this path has cost less than Cf). This path must
cross the cut at least once. Replacing the edge {i,7} by any edge on the path that crosses the
cut reduces the cost of the tree, a contradiction. Conversely, assume that Cg = Cl, but that
{i,7} is not a trec edge. Adding the edge {i,7} to the tree forms a cycle whose highest-cost
edge costs more than than Cg Replacing this edge by {i,5} yields a tree with smaller cost, #

contradiction. a

4.3 Implementation on a mesh-connected computer

In this section we give a short description of an Qfn) step algorithm for solving the minimum.
cost spanning tree problem on an n X n mesh-connected computer. We assume that the diagonal
element in each mesh row can broadcast a value to the other elements of the row in a single
step. This type of broadeast can be simulated by a mesh without this capability by slowing the
algorithm down by a constant factor (45, 59, 60]. The algorithm proceeds as follows. We assume
that the input graph is given in the form of a matrix of edge costs C® which enters row-by-row
through the top of the mesh. Matrix row { is modified as it passes over rows 1 through i — 1
and is stored when it reaches mesh row i. When matrix, row i passes over mesh row &, the value
Ck-1 is broadcast right and left from the diagonal celi (k, k). Each cell (k,5),1 < j < n knows

the value of C5! and computes
k _ oo k=l k-1 ck-1
Ci; = min{C;;™", max{C;i™", Cs5 ').

which is passed down to the next mesh row. After reaching mesh row i, matrix row i stays there
until each matrix row I, i <! < n, above it has passed over it and then continues to propagate
down, passing over the rest of the matrix rows. The output matrix C" exits row-by-row from
the bottom of the mesh. By Theorem 72, the adjacency matrix of the minimum-cost spanning

tree can be constructed by cemparing the input and output matrices.

44

CHAPTER 4. MINIMUM-COST SPANNING TREE

Directions for further research

Packet routing algorithms, distributed random-aczess machines, and network emulations are
the objects of ongoing research. This section presents some of the open questions and very

recent results in these areas.

Packet routing

Many challenging routing and sorting problems remain to be solved. As we mentioned in
Section 1.2, there is no efficient algorithm known for finding a schedule of length O(c+ d) for a
set of packets whose paths have congestion ¢ and dilation d. Also, there is no known algorithm
simpler than that of Section 1.5 for routing on an N-node butterfly in O(log N') steps using
constant-size queuces. A simple FIFO queueing discipline performs well in simulations but has
cluded analysis.

Although Sections 1.9 and 3.6 yrovide randomized algorithims for sorting on the butterfly
and shuflle-exchange graphs in O(log N) steps using constant-size queues, there are no known
deterministic algorithms for routing or sorting en the butterfly or shuffle-exchange graphs in
O(log N) steps, even if large queues are allowed. Recently Cyper and Plaxton [21) discovered
a deterministic algorithm for sorting on the shuffle-exchange graph in O(log N (loglog N)?)
steps. Also, Upfal [95] recently found a deterministic algorithm for routing cr a multibutterfly
network in O(log N) steps using constant-size queues. However, Upial's algorithm does aot
combine multiple packets with the same destination. The only known deterministic algorithin
for sorting N packets on an N-node bounded-degree network in O(log N') steps [47) is based on
the complicated AKS network [2].

Routing in the presence of faults has become an area of intense research. Typically it

145

146 DIRECTIONS FOR FURTHER RESEARCII

is assumed that some of tha edges or some of the nodes cannot transmit packets, and that
these failures are casily detected. 1t is alzo sometimes assumed that the faults are distributed

randomly throughout the network. Some of the recent results are summarized below.

In 1987, Hastad, Leighton, and Newman [31) presented a simple randomized onsline algo-
rithm for embedding an N.node hypercube in N-node faulty hypercube with constaat load,
congestion, dilation. Faults are assumed to occur at the nodes randomly and independently
with some fixed probability p. As a consequence, the faulty hypercube can emulate a fault-
free hypercube with constant slowsdlown. Thus, it can route any permutation of N packets in
O(log N') time using constant-size queues on the edges. In 1989 they discovered an O(log N)-
step algorithim for routing directly on the faulty hypercube {32). The algorithin is adaptive in

the sense that packets alter their paths to avoid faults.

Rabin {77] designed a fault-tolerant routing algorithm for the hypercube using error-
correcting codes. Ilis idea is to break each message into smaller pieces and encode them so
that the original message can be recovered from any majority of them. In the course of rout.
ing, pieces are lest if they attempt to use faulty edges, enter full queues, or fail to reach their
destinations quickly. Despite these losses, with high probability a majority of the pieces for
cach message reach their destinations. The algorithm routes a permutation of N messages
in O(log N') time on an N-node hypercube using constant.size queues at the nodes. Edges
are assumed to fail randomly and independently with probability 1/log? N. In this scheme,
cach message is broken into Jog N picces. Attached to each piece is a O(log N)-bit ticket of
crror-correcting information. Thus, for the scheme to be efficient, messages must be at least
Qlog? N) bits long,

Raghavan [79] considered routing permutations on a faulty mesh. e .howed that on a
VN % VN mesh where nodes fail randomly and independently with some fixed probability
p £ .29, every packet that can reach its destination does so in O(v/N log N) time. The algorithm
is randomized and uses queues of size O(log? N). Raghavan’s result was improved by Karlin,
Leighton, Raghavan, and Thomborson, who showed that after sustaining k faults, a mesh can

route any permutation in min{v'N + O(k?), N} time.

In [52] we described an adaptive algorithm for routing on Upfal’s multibutterfly [95] in the

presence of faults. We proved that an N-input multibutterfly can sustain k faults and still route

DIRECTIONS FOR FURTHER RESEARCH L7

log N permutations between some set of N ~ O(k) inputs and ¥ — O(k) outputs in O(log V')
time. The multibutterfly is even more resilient to randomized faults. A specially modified twin
butterfly can tolerate N4 faults at internal nodes, and still route any log N permutations
of N packets in O(log V') time. BDefore routing begins, faulty regions are spliced out of the

multibutterfly, Therealter, the packets route as if there were o faults.

Distributed random-access machines

‘To date, all DRAM algorithms solve graph theoretic problems. It is natural to wonder whether
there are other problem domains for which communication-efficient algorithms can be designed.
One difficuity faced in designing DRAM algorithms for other domains is the lack of uniform-
cost shared memory in the model. Unfortunately we haven't found any meaningful way to

incorporate PRAM-like memory into the model.

Emulations

Chapter 3 leaves open several challenging problemis. For example, we do not know if there a
real-time simulation of a complete ternary tree on a complete binary tree, Another unresolved
question is whether there is a class of bounded-degree graphs that can efficiently emulate the
class of all bounded-degree graphs. If so, the graphs in this universal class must be expanders.

Schwabe recently resolved a long open question by proving that the butterfly and shuffle-
exchange graphs are computationally equivalent[85]. He showed that each network can perform
a real-time emulation of the other. The proof combines the techniques of embedding little
butterflies in a shuflle.exchange graph from Section 3.6 (and vice versa) with the overlap strategy

from Section 3.5.2 used by the butterfly to emulate the mesh.

148 DIRECTIONS FOR FURTHER RESEARCI

Bibliography

(1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison~Wesley, Reading, MA, 1974,

[2] M. Ajtai, J. Komlos, and E. Szemeredi. An Q(N log N) sorting network. In Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, pages 1-9, April 1983.

(3] R. Aleliunas. Randomized parallel communication. In Proceedings of the ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, pages 60-72, August 1982.

(4] D. Angluin and L. G. Valiant. Fast probabilistic algorithms for hamiitonian circuits and
matchings. Journal of Compuler and System Sciences, 18(2):155-193, April 1979.

(5] M. Atallah and U. Vishkin. Finding Euler tours in parallel. Journal of Computer and
System Sciences, 29(3):330-337, July 1984.

[6) M. J. Atallah and S. R. Kosaraju. Graph problems on a mesh-connectnd processor array,
Journal of the ACM, 31(3):649-667, July 1984.

(7} B. Awerbuch, A. Isracli, and Y. Shiloach. Finding Euler circuits in logarithmic paralicl
time. In Proccedings of the 16th Annual ACM Symposium on Theory of Compuling, pages
249-257, April 1984,

(8] B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for Ultracomputer
and PRAM. In Proceedings of the 1983 International Conference on Parallel Processing,
pages 175-179. IEEE, August 1983.

[9) K. Batcher. Sorting networks and their applications. In Proceedings of the AFIPS Spring
Joint Computing Conference, volume 32, pages 307-314, 1968.

149

150 BIBLIOGRAFPIY

(10} V. E. Benes. Aathematical Theory of Connecting Networks and Telephone Traffic. Aca-

demic Press, New York, 1965.

(11] S. N. Bhatt, F. R. K. Chung, ¥.-\W. lHong, £, T, Leighton, and A. L. Rosenherg. Optimal
simulations by butterfly retworks. In Proceedings of the 20th Annuel ACM Symposium
on Theory of Computing, pages 192-204, My 1988,

112] §. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Gptisnal simulations of
tree machines. In Proceedings of the 87th Annual Symposium on Foundations of Computer
Science, pages 274~282, IEER, October 1986.

[13) S. N. Bhatt and [Ipsen. Embedding tsees in the hypercube. Technical Report RR-443,
Yale University, New Haven, CT, 1988.

{13} S. N. Bhiatt and C. E. Leiscrson. How te assemble tree machines. In F. P. Preparata,
editor, VLEI Theory. Volume 2 of Advances in Compuling Rescarch, pages 95-114. JAL
Press, Greenwicii, CT, 1984.

{15] R. P. Brent. The parailel evaluation of general arithmetic cxpressions. Journal of the
ACM, 21(2):201-208, April 1374.

(16] R. P. Brent and . T Kung. A regular layout for parallel adders. IEEE Transactions on
Compulers, C-31(3):260-264, darch 1982,

[17]) 1. L. Carter and M. N, Wegman. Universal classes of hash functions. Journol of Compulcr
and Syslem Sciences, 18(2):143~154, April 1979,

[18] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the

sumn of observations. Annals of Mathematical Statistics, 23:493-507, 1952.

19] T. W. Christopher. An implementation of Warshall's algorithm for transitive closure on
]
a cellular computer. Technical Report 3¢, Institute for Computer Research, University of
Chicago, Chicago, 1L, 1973.

[20] R. Cole and U. Vishkin. Deterministic coin tossing and accelerating cascades: micro and
macro techniques for designing parallel algorithms. In Proceedings of the 18th Annual

ACM Symposium on Theory of Compuling, pages 206-219, May 1986.

BIBLIOGRAPHY 151

[21] R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic time on the

hypercube and related computers. Unpublished manuscript.

[22] E. Dekel, D. Nassimi, and S. Sahni. Parallel matrix and graph algorithms. SIAM Journal
on Cor:puting, 10(4):657-675, November 1981.

[23] A. K. Dewdney, Computer recreations. Scientific American, 252(6):18-29, June 1985.

(24) M. J. Fischer and R. E. Ladner. Parallel prefix computation. Journal of the ACM,
27(4):831-838, October 1980.

[25] R. W. Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.

(26) A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. In
Procecdings of the 18th Annual ACM Symposium on Theory of Computing, pages 136-146,
May 1986.

[27] A. V. Goldberg and R. E. Tarjan. Solving minimum-cost flow problems by successive
approximation. In Proccedings of the 19th Annual ACM Symposium on Theory of Com-
puting, pages 7-18, May 1987.

(28] D. S. Greenberg, L. S. Heath, and A. L. Rosenberg. Optimal embeddings of the FFT
graph in the hypercube. Unpublished manuscript.

[29] R. 1. Greenberg and C. E. Leiserson. Randomized routing on fat-trees. In Silvio Micali,
editor, Randomness and Computation.Volume 5 of Advances in Computing Research. JAI

Press, Greenwich, CT, 1989. To appear.

[30) L. J. Guibas, H. T. Kung, and C. D. Thompson. Direct VLSI implementation for combi-
natorial algorithms. In C. L. Seitz, editor, Proceedings of the Caltech Conference on Very
Large Scale Intcgration, pages 509-525, Pasadena, CA, January 1979. Caltech Computer

Science Department.

[31] J. Hastad, T. Leighton, and M. Newman. Reconfiguring a hypercube in the presence

of faults. In Proceedings of the 19th Annual ACM Symposium on Theory of Compuling,
pages 274-284, May 1987.

152 BIBLIOGRAPHY

(32] J. Hastad, T'. Leighton, and M. Newman. Fast computation using faulty hypercubes. In
Proceedings of the 21st Annual ACN Symposium on Theory of Computing, pages 251-263,
May 1989.

[33] W. D. Hillis and G. L. Stecle Jr. Data parallel algorithms. Communications of the ACA,
29(12):1170-1183, December 1986.

(34) D. locy and C. E. Leiserson. A layout for the shuffle.exchange network. In Proceedings of
the 1980 International Conference on Parallel Processing, pages 329-336. IEEE, August
1980.

(35) A. R. Karlin and E. Upfal. Parallel hashing — an efficient implementation of shared
memory. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing,
pages 160-168, May 1986.

(36) J. Kilian, July 1986. Private communication.

{37) S. C. Klecne. Representation of events in nerve nets and finite automata. In C. E.
Shannon and J. McCarthy, editors, Automata Studies, pages 3--41. Princeton University
Press, Princeton, NJ, 1956.

(38] D. J. Kleitman, F. T. Leighton, M. Lepley, and G. L. Miller. New layouts for the shuflle-

exchange graph. In Proccedings of the 18th Annual ACM Symposium on Theory of Com-

puling, pages 278-292, May 1981.

(39) D. E. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley, Reading,
MA, second edition, 1973.

[40] R. Koch, T. Leighton, B. Maggs, S. Rao, and A. Rosenberg. Work-preserving emulations
of fixed-connection networks. In Proccedings of the 21st Annual ACM Symposium on

Theory of Computing, pages 227-240, May 1989.

[41] D. Krizanc, S. Rajasekaran, and Th. Tsantilis. Optimal routing algorithms for mesh-
connected processor arrays. In J. Reif, editor, Aegean Workshop on Computing: VLSI
Algorithms and Architectures. Volume 319 of Lecture Notes in Computer Science, pages

411-422. Springer-Verlag, New York, NY, June 1988.

BIBLIOGRAPHY 153

[42) C. P, Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficicnt parallel algo-

rithms. Unpublished manuseript.

(43] M. Kunde. Routing and sorting os mesh-connected arrays. In J. Reif, editor, Aegean
Workshop on Compuling: VLSI Algorithms and Architectures. Volume 319 of Lecturs
Notes in Computer Science, pages 423-433. Springer~Verlag, New York, NY, June 1988.

[44) H. T, Kung and C. E. Leiserson. Systolic arrays (for VLSI). In L. S. Duff and G. W,
Stewart, editors, Sparse Matriz Proceedings, pages 256-282. SIAM, 1978.

[45) F. T. Leighton. An introduction to the theory of networks, parallel computation and
VLSI design. Unpublished manuscript.

[46) F. T. Leighton. Complezity Issues in VLSI. MIT Press, Cambridge, MA, 1983,

[17] F. T. Leighton. Tight bounds on the complexity of parallel sorting. IEEE Transactions
on Compulers, C-34(4):344-354, April 1985.

(48] F. T. Leighton, M. Lepley, and G. L. Miller. Layouts for the shuffle-exchange graph
based on the complex plane diagram. SIAM Journal of Algebraic and Discrete Methods,
5:177-181.

(49] F T. Leighton, F. Makedon, and L. Tollis, A 2N -2 stcp algonthm for routmg in an
N X N mesh. In Pnocecdmgt of lhc'198.9 ACM Sympoamm on Pamllcl AIgor:thms ‘and
Architectures, pages 328-335, June 1989,

(50) F. T. Leig' -n and G. L. Miller. Optimal layouts for small shuffle-exchange graphs. In
J. Gray, editor, VLSI 81-Very Large Scale Integration, pages 289-299. Academic Press,
1981.

(1) F. L. Leighton and A. L. Rosenberg. Three-dimensional circuit layouts. SIAM Journal
on Compuling, 15(3):793-813, August 1986.

[52) T. Leighton and B. Maggs. Expanders might be practical: fast algorithms for routing
around faults in multibetterflies. In Procecdings of the 30th Annual Symposium on Foun-

dations of Computer Science, pages 384-389. IEEE, October 1989.

154 BIBLIOGRAPHY

{53] . Leighton, B. Maggs, and S, Rao. Universal packet routing algorithms. I Proceedings of
the 29th Annual Symposium on Foundations of Computer Science, pages 256-271. IEEE,
October 1988.

{54] L. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multi-
commodity flow problems with applications to approximation algorithms. In Proceedings
of the 29th Annual Symosium on Foundations of Computer Science, pages 422-431.
IEEE, October 1988.

[55) C. E. Leiserson. Arca-Efficient VLSI Computation. MIT Press, Cambridge, MA, 1983.

[56] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient supercomputing.
IEEE Transactions on Compulers, C-34(10):892-901, October 1985.

[57) C. E. Leiserson and B. M. Maggs. Communication-efficient parallel graph algorithms.
Technical Memo MIT/L.CS/TM-318, MIT Laboratory for Computer Science, Cambridge,
MA, December 1986.

58] C. E. Leiserson and B. M. Maggs. Communication-cfficient parallel graph algorithms for

distributed random-access machines. Algorithimica, 3:53-77, 1988.

[59) C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimization of synchronous circuitry by
retiming. In R. Bryant, editor, Third Callech Conference on Very Large Scale Integration,
pages 87-116, Rockville, MD, March 1983. Computer Science Press.

[60) C. E. Leiserson and J. B. Saxe. Optimizing synchronous systems. Journal of VLSI and
Computer Systems, 1(1):41—46, 1983.

[61) K. N. Levitt and W. H. Kautz. Cellular arrays for the solution of graph problems.
Communications of the ACM, 15(9):789-801, September 1972.

[62] R. J. Lipton and R. E. Tarjan. A planar separator theorem. SIAM Journal of Applied
Mathematics, 36(2):177-189, April 1979.

[63] B. M. Maggs. A scheme for area-universal computation. Unpublished manuscript.

BIBLIOGRAPHY 155

(64) B. M. Maggs. Communication-efficient parallel graph algorithms. Master's thesis, De-
partment of Electrical Engincering and Computer Seience, Massachusetts Institute of
‘Lechnology, Cambridge, MA, May 1936.

[65) B. M. Maggs and S. A. Plotkin. Minimum-cost spanuing tree as a path-finding problem.
Information Processing Letters, 26(6):291~293, January 1988.

[66) R. McNaughton and I[. Yamada. Regular expressions and state graphs for automata,
IRE Transactions on Electronic Computers, 9(1):39-47, 1960.

(67) F. Meyer auf der Heide. Efficient simulations among several models of parallel computers.
SIAM Journal on Computing, 15(1):106-119, February 1986.

(68) G. Miller and J. Reif, Parallel tree contraction and its application. In Proccedings of
the 26th Annual Symposium on Foundations of Computer Science, pages 478-189. IEEE,
October 19835.

[69) R. Miller, V. K. Prasanna-Kumar, D. Reisis, and Q. F. Stout. Meshes with reconfigurable
buses. In J. Allen and F. T. Leighton, editors, Advanced Rescarch in VLSI: Proccedings
of the Fifth MIT Conference, pages 163~178, Cambridge, MA, April 1988, MIT Press.

(70) D. Nassimi and S. Sahni. Parallel permutation and sorting algorithms and a new gener-
alized connection network. Journal of the ACM, 29(3):642-667, July 1982,

(71] Yu.Ofman. On the algorithmic complexity of discrete functions. Soviet Physics ~ Doklady,
7(7):589-591, 1963. English translation.

72] C. H. Papadimitriou and M. Yannakakis. Towards an architecture-independent analysis
of parallel algorithms. In Procecdings of the 20th Annual ACM Symposium on Theory of
Computing, pages 510-513, May 1988.

(73] J. K. Park. A deterministic routing algorithm for the butterfly fat-tree. Unpublished

manuscript.

[74] D. Peleg and E. Upfal. The token distribution problem. In Proceedings of the 27th Annual
Symposium on Foundations of Computer Science, pages 418-427. IEEE, October 1986.

156 BIBLIOGRAPHY

[75] G. F. Pfister and V. A. Norton. ‘Hot spot' contention and combining in multistage
interconnection networks. IEEE Transactions on Computers, C=34(10):945-948, October
1985.

(76) N. Pippenger. Parallel communication with limited buffers. In Procecdings of the 25th
Annuol Symposium on Foundations of Computer Science, pages 127-136, IEEE, October
198".

77) M. O. Qabin, Efficient dispersal of information for security load balancing and fault

tolerance. Journal of the ACAL, 1989. To appuar.

(78] P. Raghavan. Probabilistic construction of deterministic algorithms: approximate packing
integer programs. Journal of Computer and System Sciences, 37(4):130-143, October
1988.

79] P. Raghavan, Robust algorithms for packet routing in a mesh. In Proceedings of the 1989
ACM Symposium on Parallel Algorithms and Architectures, pages 344-350, June 1989,

(80] A. Raghunathan and II. Saran. Is the shuffic-exchange better than the butterfly? Un-

published manuscript.

(81} A. G. Ranade. How to cmulate shared memory. In Proccedings of the 28th Annual
Symposium on Foundations of Computer Science, pages 185-194. IEEE, October 1987.

(82] A. G. Ranade. Fluent Parallel Computation. PhD thesis, Yale University, New Haven,
CT, 1988.

[83] J. H. Reif. Personal communication.

(84] J. H. Reif and L. G. Valiant. A logarithmic time sort for linear size networks. Journal of
the ACM, 34(1):60-76, January 1987,

(85) E. J. Schwabe. The butterfly and shuffle-exchange graph are coraputationally equivalent.

Unpublished manuscript.

[86) F. L. Van Scoy. The parallel recognition of classes of graphs. IEEE Transaclions on
Computers, C-29(7):563-570, July 1980.

BIBLIOGRAPITY 157

(87) M. Sckaunina. On an ordering of the set of vertices of a connected graph. Publications of
the Facully of Science, University of Brno, 412:137-142, 1960.

(88] Y. Shiloach and U. Vishkin. An O(logn) parallel conrectivity algorithm. Journal of
Algorithms, 3:57-67, 1982,

(89]) J. Spencer. Ten Lectures on the Probabilistic Method. SIAM, Philadelphix, PA, 1987,

[90] D. Steinberg and M. Rodeh. A layout for t'e shufMe.exchange network with
O(N?/1og*? N) area. IEEE Tvansactions on Computers, C~30(12):977-982, December
1981.

[91) R. E. Tarjan, Data Structures and Network Algorithms. SIAM, Philadelphia, PA, 1983.

[92] R. E. Tarjan and U. Vishkin. Finding biconnected components and computing tree func-
tions in logarithmic parallel time, In Proccedings of the 25th Annual Symposium on
Foundations of Computer Science, pages 12~20. IEEE, October 1984.

(93] C. D. Thompson. A Complezity Theory for VLSI PhD thesis, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, PA, 1980.

(94] E. Upfal. Efficient schemes for parallel communication. In Proccedings of the ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Compuling, pages 55-59, Au.
gust 1982,

(95] E. Upfal. An O(log N) deterministic packet routing scheme. In Prozecdings of the 21st
Annual ACM Symposium on Theory of Computing, pages 241-250, May 1989.

[96) L. G. Valiant. A schume for fast parallel communication. SIAM Journal on Computing,
11(2):350-361, May 1982.

(97) L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In
Proccedings of the 18th Annual ACM Symposium on Theory of Computing, pages 263-
277, May 1981.

(98] A. Waksman. A permutation network. Journal of the ACM, 15(1):159-163, January 1968.

158 BIBLIOGRAPHY

199) S. Warshall. A theorera on boolean matrices. Journal of the ACM, 9(1):11-12, January
1962,

{100} D. S. Wisc. Compact layouts of Banyan/FEFT networks. In Il T. Kung, 3. Sproull, and
G. Steele, cditors, CMU Conference on VLSI Systems and Compulations, pages 186-195,

Rockville, MD, October 1081, Computer Science Press.

{101) J. C. Wyllie. The Complezity of Parallel Computations. PhD thesis, Cornell University,
Iihaca, NY, August 1979.

e e e i e e

OFFICIAL DISTRIBUTION LIST

Director

Information Processing Techniques Office
Defense Advanced Rescarch Projects Agency
1400 Wilson Boulevard

Arlington, VA 22209

Office of Naval Research

800 North Quincy Street
Arlington, VA 22217

Attn: Dr. Gary Koop, Code 433

Director, Code 2627
Naval Rescarch Laboratory
Washington, DC 20375

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

National Science Foundation
Office of Computing Activities
1800 G. Streect, N.W.
Washington, DC 20450

Attn: Program Dirsctor

Dr. E.B. Royce, Code 38
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

2 copies

2 coples

6 copies

12 copies

2 copies

1 copy

